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Abstract Emerging applications such as personalized
portals, enterprise search, and web integration systems often
require keyword search over semi-structured views. How-
ever, traditional information retrieval techniques are likely to
be expensive in this context because they rely on the assump-
tion that the set of documents being searched is materialized.
In this paper, we present a system architecture and algorithm
that can efficiently evaluate keyword search queries over vir-
tual (unmaterialized) XML views. An interesting aspect of
our approach is that it exploits indices present on the base
data and thereby avoids materializing large parts of the view
that are not relevant to the query results. Another feature of
the algorithm is that by solely using indices, we can still score
the results of queries over the virtual view, and the resulting
scores are the same as if the view was materialized. Our per-
formance evaluation using the INEX data set in the Quark
(Bhaskar et al. in Quark: an efficient XQuery full-text imple-
mentation. In: SIGMOD, 2006) open-source XML database
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system indicates that the proposed approach is scalable and
efficient.
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1 Introduction

Traditional information retrieval systems rely heavily on a
fundamental assumption that the set of documents being
searched is materialized. For instance, the popular inverted
list organization and associated query evaluation algorithms
[5,35] assume that the (materialized) documents can be
parsed, tokenized, and indexed when the documents are
loaded into the system. Further, techniques for scoring results
such as TF-IDF [35] rely on statistics gathered from material-
ized documents such as term frequencies (number of occur-
rences of a keyword in a document) and inverse document
frequencies (the inverse of the number of documents that
contain a query keyword). Finally, even document filtering
systems, which match streaming documents against a set of
user keyword search queries (e.g., [10,17]), assume that the
document is fully materialized at the time it is handed to
the streaming engine, and all processing is tailored for this
scenario.

In this paper, we argue that there is a rich class of semi-
structured search applications for which it is undesirable or
impractical to materialize documents. We illustrate this claim
using two examples.

Personalized Views.
such as MyYahoo!

Consider a large online web portal
that caters to millions of users. Since

1 http://my.yahoo.com.
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different users may have different interests, the portal may
wish to provide a personalized view of the content to its
users (such as books on topics of interest to the user along
with their reviews, and latest headlines along with previous
related content seen by the user, etc.), and allow users to
search such views. As another example, consider an enter-
prise search platform such as Microsoft Sharepoint? that is
available to all employees. Since different employees may
have different permission levels, the enterprise must pro-
vide personalized views according to specific levels, and
allow employees to search only such views. In such cases,
it may not be feasible to materialize all user views because
there are many users and their content is often overlapping,
which could lead to data duplication and its associated space-
overhead. In contrast, a more scalable strategy is to define
virtual views for different users of the system, and allow
users to search over their virtual views.

Information Integration. Consider an information integra-
tion application involving two query-able XML web services:
the first service provides books and the second service pro-
vides reviews for books. Using these services, an aggregator
wishes to create a portal in which each book contains its
reviews nested under it. A natural way to specify this aggre-
gation is as an XML view, which can be created by joining
books and reviews on the isbn of the book, and then nesting
the reviews under the book (Fig. 1). Note that the view is often
virtual (unmaterialized) for various reasons: (a) the aggrega-
tor may not have the resources to materialize all the data, (b)
if the view is materialized, the contents of the view may be
out-of-date with respect to the base data, or maintaining the
view in the face of updates may be expensive, and/or (c) the
data sources may not wish to provide the entire data set to
the aggregator, but may only provide a sub-set of the data in
response to a query. While current systems (e.g., [9,15,20])
allow users to query virtual views using query languages
such as XQuery, they do not support ranked keyword search
queries over such views.

The above applications raise an interesting challenge: how
do we efficiently evaluate keyword search queries over virtual
XML views? One simple approach is to materialize the entire
view at query evaluation time and then evaluate the key-
word search query over the materialized view. However, this
approach has obvious disadvantages. First, the cost of mate-
rializing the entire view at runtime can be prohibitive, espe-
cially since only a few documents in the view may contain
the query keywords. Further, users issuing keyword search
queries are typically interested in only the results with high-
est scores, and materializing the entire view to produce only
top few results is likely to be expensive.

2 http://www.microsoft.com/sharepoint.
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Aggregation View
(Virtual)

Keyword Query Ranked resultsT

<bookrevs>
<book isbn="111-11-1111">
<title>XML Web Services</title>
<review> <content> ...about search... </content> </review>
<review> <content> Easy to read... </content> </review>

</book>
<book isbn="222-22-2222">
<title> Artificial Intelligence </title> <review>...</review>...
</book>
</bookrevs>

Books Reviews

<reviews>

<review><isbn>111-11-1111</isbn>
<rate> Excellent </rate>
<content>...about search...</content>
<reviewer>John</reviewer>

</review>

<review> <isbn>111-11-1111</isbn>

<rate> Good </rate>
<content> Easy to read...</content>
<reviewer>Alex</reviewer>

</review>

<books>
<book><isbn>111-11-1111</isbn>

<title>XML Web Services </title>
<publisher>Prentice Hall </publisher>
<year> 2004 </year>

</book>

<book><isbn>222-22-2222</isbn>
<title>Artificial Intelligence </title>
<publisher> Prentice Hall </publisher>
<year> 2002 </year>

</book>

</books> </reviews>

Fig. 1 An XML view associating books and reviews

To address the above issues, we propose an alternative
strategy for efficiently evaluating keyword search queries
over virtual XML views. The key idea is to use regular indi-
ces, including inverted list and XML path indices that are
present on the base data to efficiently evaluate keyword search
over views. The indices are used to efficiently identify the
portion of the base data that is relevant to the current key-
word search query so that only the top ranked results of the
view are actually materialized and presented to the user.

The above strategy poses two main challenges. First, XML
view definitions can be fairly complex, involving joins and
nesting, which leads to various subtleties. As an illustration,
consider Fig. 1. If we wish to find all books with nested
reviews that contain the keywords “XML” and “search”, then
ideally we want to materialize only those books and reviews
such that rogether contain the keywords “XML” and “search”
(even though no book or review may individually contain
both the keywords). However, we cannot determine which
reviews belong to which book (to check whether they together
contain both the keywords) without actually joining the books
and reviews on the isbn, which is a data value. This presents
an interesting dilemma: how do we selectively extract some
fields needed for determining related items in the view (e.g.,
isbn) without actually materializing the entire view?

The second challenge stems from ranking the keyword
search results. As mentioned earlier, popular ranking meth-
ods such as TF-IDF require statistics gathered from the
documents being searched. How do we efficiently compute
statistics on the view from the statistics on the base data, so
that the resulting scores and rank order of the query results
is exactly the same as when the view is materialized?

Our solution to the above problem is a three-phase algo-
rithm that works as follows. In the first phase, the algorithm
analyzes the view definition and query keywords to identify
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a query pattern tree (or QPT) for each data source (such
as books and reviews); the QPT represents the precise parts
of the base data that are required to compute the potential
results of the keyword search query. In the second phase,
the algorithm uses existing inverted and path indices on the
base data to compute pruned document trees (or PDT)
for each data source; each PDT contains only small parts
of the base data tree that correspond to the QPT. The PDT is
constructed solely using indices, without having to access the
base data. In this phase, the algorithm also propagates key-
word statistics in the PDTs. In the third phase, the query is
evaluated over the PDTs, and the top few results are expanded
into the complete trees; this is the only phase where the base
data is accessed (for the top few results only).

We have experimentally compared our approach with two
alternatives: the naive approach that materializes the entire
view at query time, and TLC/GTP [13,33] with TermJoin [2],
which is a state-of-the-art implementation of integrating
structure and keyword search queries. Our experimental
results show that our approach is more than ten times faster
than these alternatives, due to the following two reasons: (1)
we use path indices to efficiently create PDTs, thereby avoid-
ing more expensive structural joins, and (2) we selectively
materialize the element values required during query evalua-
tion using indices, without having to access the base data. We
have also compared our PDT generation with the technique
for projecting XML documents [28]; again our approach is
more than an order of magnitude faster because we generate
PDTs solely using indices.

In summary, we believe that the proposed approach is
the first optimized end-to-end solution for efficient keyword
search over virtual XML views. The specific contributions
of this paper are

— A system architecture for efficiently evaluating keyword
search queries over virtual XML views (Sect. 3).

— Efficientalgorithms for generating pruned XML elements
needed for query evaluation and scoring, by solely using
indices (Sect. 4).

— Generalizations and optimizations to the proposed algo-
rithms to handle a larger class of complex XML views that
contain descendant axes, element wild cards and repeat-
ing element tags (Sect. 5).

— Formalization of the invariants of the generalized algo-
rithms along with their proof of correctness (Sect. 6 and
Appendix A).

— Evaluation and comparison of the proposed approach
using the SO0OMB INEX dataset? (Sect. 7).

http://inex.is.informatik.uni-duisburg.de:2004.

We note that Sects. 5, 6, and Appendix A are new sections
that significantly generalize the earlier results that appeared
in [39].

There are some interesting optimizations and extensions
to the proposed approach that are not explored in this paper.
First, the proposed approach produces all pruned view ele-
ments, so that each element is scored and only the top few
results are fully materialized. While this deferred material-
ization already leads to significant performance gains, an
even more efficient strategy might be to avoid producing the
pruned view elements that do not make it to the top few
results. This problem, however, turns out to be non-trivial
because of the presence of non-monotonic operators such as
group-by that are common in XML views (please see the
conclusion for more details). Second, the current focus of
this paper is on aspects related to system efficiency; conse-
quently, the discussion on scoring is limited to simple XML
scoring methods based on TF-IDF [35]. Generalizing the pro-
posed approach to deal with more sophisticated XML scoring
functions (e.g., [3,22,29]) is another interesting direction for
future work.

2 Background and problem definition

We first describe some background on XML, before present-
ing our problem definition.

2.1 XML Documents and queries

An XML document consists of nested XML elements start-
ing with the root element. We support complex types with
mixed content, hence each element can have values, attri-
butes, and nested subelements. Figure 1 shows an exam-
ple XML document representing books with nested reviews.
Each (book) element has (title) and (review) subelements
nested under it. The (book) element also has the isbn attri-
bute. For ease of exposition, we treat attributes as though
they are sub-elements. While XML elements can also have
references to other elements (IDREFs), they are treated and
queried as values in XML; hence we do not model this rela-
tionship explicitly for the purposes of this paper. In order to
capture the text content of elements, we use the predicate
contains(u, k), which returns true iff the element u directly
or indirectly contains the keyword k (note that k& can appear
in the tag name or text content of u or its descendants).

An XML database instance D can be modeled as a set
of XML documents. An XML query Q can be viewed as
a mapping from a database instance D to a sequence of
XML documents/elements (which represents the output of
the query). More formally, if U D is the universe of XML
database instances and S is the universe of sequences of
XML documents/elements, then Q : UD — §. Thus, we

@ Springer
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let Hview :=
for #book in fn:doc(books.xml)/books//book
where #book/year > 1995
return <bookrevs>
<book> {#book/title} </book>,
{for %rev in fn:doc(reviews.xml)/reviews//review
where #rev/isbn = $book/isbn
return $rev/content}
</bookrevs>

for ¥bookrev in #view
where %bookrev ftcontains('XML' & 'Search')
return #bookrev

Fig. 2 Keyword search over XML view

use the notation Q(D) to denote the result of evaluating the
query Q over the database instance D. A query Q is typically
specified using an XML query language such as XQuery.
An XML view is simply represented as an XML Query.
For instance, the variable $view in Fig. 2 corresponds to
an XQuery query/view which nests review elements in the
review document under the corresponding book element in
the book document. We thus use the term view and query
interchangeably for the rest of the paper. Further, we use
the following notation for reasoning about sequences of ele-
ments. Given a sequence of elements s, e € s is true iff the
element e is present in the sequence s.

2.2 XML scoring

An important issue for keyword search queries is scoring
the results. There have been many proposals for scoring
XML keyword search results [3,4,21,22,29]. As mentioned
in Sect. 1, in the paper we focus on the commonly used
TF-IDF method proposed in the context of XML documents
[21]. In this context, tf and idf values are calculated with
respect to XML elements, instead of entire documents as in
the traditional information retrieval. Specifically, given an
XML view V over a database D, the TF-IDF method defines
two measures:

— tf (e, k), which is the number of distinct occurrences of
the keyword k in element e and its descendants (where
e € V(D)), and

— idf(k) = |{e|e€V(D)lzg(?n)tlains(e,k)}l (the ratio of the num-
ber of elements in the view result V(D) to the number of
elements in V(D) that contain the keyword k).

Given the above measure, the score of a result element e
for a keyword search query Q is defined to be score(e, Q) =
Yreo(tf (e, k) xlog(idf (k))). The score can be further nor-
malized using various methods proposed in the literature
[43].

@ Springer

2.3 Problem definition

We use a set of keywords Q = {ky, ko, ..., k,} to represent
akeyword search query and we support both conjunctive and
disjunctive queries.

First, we define the problem of conjunctive keyword search
over views as follows.

Problem CONJ-KS. Given a view V defined over a data-
base D, the result of a keyword search query Q, denoted as
CONJ-RES(Q,V,D), is the sequence s such that

— Veees=eeV(D),and
— Vee e s= Vq e Qcontains(e, q), and
Ve (e € V(D) AVq € Qcontains(e,q)) = e € s

Figure 2 illustrates a keyword query { ‘XML’, ‘Search’}
over the view corresponding to the variable $view. Given
the definition of score in the previous section, we can further
define the problem of ranked keyword search as follows.

Problem Ranked-CONJ-KS. Given aview V defined over a
database D and the number of desired results K, the result of
a ranked keyword query Q is the ordered list of K elements
with highest scores in CONJ-RES(Q,V,D) in decreasing order
of score, where we break ties arbitrarily.

The disjunctive queries can be defined similarly as fol-
lows.

Problem DISJ-KS. Given a view V defined over a data-
base D, the result of a keyword search query Q, denoted as
CONJ-RES(Q,V,D), is the sequence s such that

Vee e s=ee V(D),and
— Veees= 3dq € Q contains(e, q), and
Ve (e € V(D) A3Jq € Qcontains(e,q)) = e € s

Problem Ranked-DISJ-KS. Given a view V defined over a
database D and the number of desired results K, the result of
a ranked keyword query Q is the ordered list of K elements
with highest scores in DISJ-RES(Q,V,D) in decreasing order
of score, where we break ties arbitrarily.

Our running example is an example of the problem
Ranked-CONJ-KS. While the rest of the paper is mostly
based on the running example, the ideas can easily apply
on Ranked-DISJ-KS. In fact, the difference between Ranked-
CONJ-KS and Ranked-DISJ-KS only influences the last
expansion phase. Our PDT algorithms, which are the main
contributions of the paper, remain the same.
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Fig. 3 Keyword query processing architecture

3 System overview
3.1 System architecture

Figure 3 shows our proposed system architecture and how it
relates to traditional XML full-text query processing. The top
big box denotes the query engine sub-system and the bottom
big box denotes the storage and index subsystem. The solid
lines show the traditional query evaluation path for full-text
queries (e.g., [6,16,26,31]). The query is parsed, optimized
and evaluated using a mix of structure and inverted list indices
and document storage. However, as mentioned in the intro-
duction, traditional query engines are not designed to support
efficient keyword search queries over views. Consequently,
they either disallow such queries (e.g., [16,31]), materialize
the entire view before evaluating the keyword search query
(e.g., [6]), or do not support such queries efficiently (e.g.,
[26]), as verified in our performance study (Sect. 7).

To efficiently process keyword search queries over views,
we adapt the existing query engine architecture by adding
three new modules (depicted by dashed boxes in Fig. 3). The
modified query execution path (depicted by dashed lines in
Fig. 3) is as follows. On detecting a keyword search query
over a view that satisfies certain conditions (clarified at the
end of this section), the parser redirects the query to the Query
Pattern Tree (QPT) Generation Module. The QPT, which is
a generalization of the Generalized Tree Patterns [13], iden-
tifies the precise parts of the base data that are required to
compute the results of the keyword search query. The QPT
is then sent to the Pruned Document Tree (PDT) Generation
Module. This module generates PDTs (i.e., a projection of
the base data that conforms to the QPT) using only the path
indices and inverted list indices; consequently, the generation
of PDTs is expected to be fast and cheap.

The QPT Generation Module also rewrites the original
query to go over PDTs instead of the base data and sends it

to the traditional query optimizer and evaluator. Note that
our proposed architecture requires no changes to the XML
query evaluator, which is usually a large and complex piece
of code. The rewritten query is then evaluated using PDTs to
produce the view that contains all view elements with pruned
content (determined using path indices), along with informa-
tion about scores and query keywords contained (determined
using inverted indices). These elements are then scored by
the Scoring & Materialization Module, and only those with
highest scores are fully materialized using document
storage.

Our current implementation supports views specified
using a powerful subset of XQuery, including XPath expres-
sions with named child and descendant axes, predicates on
leaf values, nested FLWOR expressions and non-recursive
functions. We currently do not support predicates on the
string values of non-leaf elements and other XPath axes such
as sibling and position based predicates, although it is pos-
sible to extend our system to handle these axes by using an
underlying structure index that supports these axes
(e.g., [14]). The current implementation only supports con-
junctive and disjunctive containment predicates and it is pos-
sible to extend the architecture to support more complex
full-text predicates such as distances between different key-
words.

The supported view grammar is given below, where Expr
is the root production and VAR and TAGNAME correspond to
variables and element tag names, respectively.

Expr :- PathExpr | FLWORExpr | CondExpr
| FunctionCall | FunctionDecl
PathExpr :- 'fn:doc(' QName ')' | VAR |

| ( 'fn:doc(' QName ')' | VAR | '.' )
(*/'|'//') PathTailExpr

| PathExpr '[' PredExpr ']'
PathTailExpr :- TAGNAME \ TAGNAME ('/'\'//') PathTailExpr
PredExpr :- PathExpr | PathExpr Comp Literal
| PathExpr Comp PathExpr
Comp :- '=' | '<' | '>'
CondExpr :- 'if' Expr 'then' Expr 'else' Expr
FLWORExpr :- (ForClause \ LetClause) +
(WhereClause) ? ReturnClause
ForClause :- 'for' VAR 'in' PathExpr
LetClause :- 'let' VAR ':=' PathExpr
WhereClause :- 'where' PredExpr
ReturnClause :- 'return' RetExpr
RetExpr :- Expr
‘ '<' TAGNAME '>' ('{' RetExpr '}')* '</' TAGNAME '>'
| Expr ',' Expr
FunctionCall :- QName ' (' (PathExpr (',' PathExpr)*)? ')'
FunctionDecl :- 'declare' 'function' QName
'(' ParamList? ')' ? '{' Expr '}'
ParamList :- VAR (', ' VAR)?*

3.2 XML storage and indexing
Since our system architecture exploits indices on the base

data to generate PDTs, we now provide some necessary back-
ground on XML storage and indexing techniques.

@ Springer
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B+ tree index

e F——123 [1[1] [173 [1]2] [ ]
o] {ia T[] [ ]

(ID, TF, Position List )

(a) Dewey IDs

(b) XML Inverted list Indices

Fig. 4 Illustrating XML storage and indices

B+-Tree
Path Value IDList
/books/book/isbn “111-111-11117 | 1.1.1,1.3.1
/books/book/isbn €222-222-2222” | 1.2.1
/books/book/author/fn | “Jane” 1.243,1.74.3

Path-Values Table

Fig. 5 XML path indices

One of the key concepts in XML storage is the notion of
element ids, which is a way to uniquely identify an XML ele-
ment. One popular id format is Dewey IDs which has been
shown to be effective for search [22] and update [32] que-
ries. Dewey IDs is a hierarchical numbering scheme where
the ID of an element contains the ID of its parent element as
a prefix. An example XML document in which Dewey IDs
are assigned to each node is shown in Fig. 4a.

Another important aspect is XML indexing. At a high-
level, there are two types of XML indices: path indices and
inverted list indices (these indices can sometimes be com-
bined [27]). Path indices are used to evaluate XML path and
twig (i.e., branching path) queries. Inverted list indices are
used to evaluate keyword search queries over (materialized)
XML documents. We now describe representative implemen-
tations for each type of index.

One effective way to implement path indices is to store
XML paths with values in a relational table and use indices
such as B+-tree [12,41] for efficient probes. Figure 5 shows
an example path index. As shown, the Path-Values index table
contains one row for each unique (Path, Value) pair, where
path represents a path from the root to an element in the
document, and value represents the atomic value of the last
element on the path. For each unique (Path, Value) pair, the
table stores an /D List, which is the list of ids of all elements
on the path corresponding to Path with that atomic value
(paths without corresponding values are associated with a
null value). A B+-tree index is built on the (Path, Value) pair.
Queries are evaluated as follows. First, a path query with
value predicates such as /book/author/fn[. = ‘Jane’] is evalu-
ated by probing the index using the search key (Path,‘Jane’).
Second, a path query without value predicates is evaluated
by merging lists of IDs corresponding to the path, which are

@ Springer

retrieved using Path, the prefix of the composite key. For path
queries with descendant axes, such as /book//fn, the index is
probed for each full data path (e.g., /book/name/fn), and the
lists of result ids are merged. Finally, twig queries are eval-
uated by first evaluating each individual path query and then
merging the results based on the Dewey ID.

The second type of XML indices are inverted list indi-
ces. XML inverted list indices (e.g., [22,30,42]) typically
store for each keyword in the document collection, the list of
XML elements that directly contain the keyword. Figure 4
shows an example inverted list for our example document.
In addition, an index with Dewey IDs as the keys, such as a
B+-tree, is usually built on top of each inverted list so that
we can efficiently check whether a given element contains a
keyword.

3.3 QPT generation module

The QPT Generation Module (Fig. 3) generates QPTs from
an XML view. We illustrate the QPT using the view shown
in Fig. 2. In order to evaluate this view query, we only need
a small subset of the data, such as the isbns of books and
isbns of reviews (which are required to perform a join). It
is only when we want to materialize the view results do we
need additional content such as the titles of books and con-
tent of reviews. The QPT is essentially a principled way of
capturing this information.

The QPT is a generalization of the Generalized Tree
Patterns (GTP) [13], which was originally proposed in the
context of evaluating complex XQuery queries. The GTP
captures the structural parts of an XML document that are
required for query processing. We refer the reader to [13] for
the formal definition of GTP. The QPT augments the GTP
structure with two annotations, one that specifies which parts
of the structure and associated data values are required dur-
ing query evaluation, and the other that specifies which parts
are required during result materialization.

Figure 6a shows the QPTs for the book and review docu-
ments referenced in our running example. We first describe
features present in the GTP. First, each QPT is associated
with an XML document (determined by the view query).
Second, as is usual in twigs, a double line edge denotes ances-
tor/descendant relationship and a single line edge denotes a
parent/child relationship. Third, nodes are associated with
tag names and (possibly) predicates. For instance, the year
node in Fig. 6ais associated with a predicate > 1995. Finally,
edges in the QPT are either optional (represented by dotted
lines) or mandatory (represented by solid lines). For exam-
ple, in Fig. 6a, the edge between book and ¢sbn is optional,
because a book can be present in the view result even if it
does not have an isbn; the edge between review and isbn
is mandatory, because a review is of no relevance to query
execution unless it has an isbn (otherwise, it does not join
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doc(books.xml) <books>
<book>
<isbn id="1.2.1">121-23-1321</isbn>
<title id= 1.2.3 kwd1="xml” tf1="1
kwd2="search” tf2="0 />
<year id="1.2.6">1996</year>
</book>
y : <book>
&ison  etitle year
k:
v c [.>1995], </booke>
. v </books>
doc(reviews.xml) <reviews>
. <review>
reviews <isbn id="2.2.1">121-23-1321</isbn>
<content id= 2.1.3 kwd1="xml” t{1="0
review ) kwd2="search” tf2="2 />
</review>
<review>
/ </review>
isbn ® content
v ¢ </reviews>
(a)aprT (b) POT

Fig. 6 QPTs and PDTs of book and review

with any book and is hence irrelevant to the content of the
view).

The new features in the QPT are node annotations ‘c’ and
‘v’, where ‘c’ indicates that the content of the node is prop-
agated to the view output, and ‘v’ indicates that the value of
the node is required to evaluate the view. In our example, the
‘isbn’ nodes in both the book and review QPT are marked
with a ‘v’ since their values are required for performing a
join operation; the ‘title’ and ‘content’ nodes are marked as
‘c’ nodes since their content is propagated to the view output,
and is required only during materialization. Note that a node
can be marked with both a ‘v’ and a ‘¢’ if it is used during
evaluation and propagated to the view output, although there
is no instance of this case in our example.

We now introduce some notation that is used in subsequent
sections. A QPT is a tree Q = (N, E) where N is the set of
nodes and E is the set of edges. For each node n in N, n.tag is
its tag name, n.preds is the set of predicates associated with
n, and n.ann is its node annotation(s), which can be ‘v’, ‘c’,
both, or neither. For each edge e in E, e.parent and e.child are
the parent and child node of e, respectively; e.axis is either
‘I or ‘/I’ corresponding to an XPath axis, and e.ann is either
‘0’ or ‘m’ corresponding to an optional or a mandatory edge.

4 PDT generation module

We now turn our attention to the PDT Generation Module
(Fig. 3), which is one of the main technical contributions in
the paper. The PDT Generation Module efficiently generates
a PDT for each QPT. Intuitively, the PDT only contains ele-
ments that correspond to nodes in the QPT and only contains
element values that are required during query evaluation. For
example, Fig. 6b shows the PDT of the book document for

its QPT shown in Fig. 6a. The PDT only contains elements
corresponding to the nodes books, book, isbn, title, and
year, and only the elements ¢sbn and year have values.

Using PDTs in our architecture offers two main advanta-
ges. First, the query evaluation is likely to be more efficient
and scalable because the query evaluator processes pruned
documents which are much smaller than the underlying data.
Further, using PDTs allows us to use the regular (unmodified)
query evaluator for keyword query processing.

‘We note that the idea of creating small documents is simi-
lar to projecting XML documents (PROIJ for short) proposed
in [28]. There are, however, several key differences, both in
semantics and in performance. First, while PROJ deals with
isolated paths, we consider twigs with more complex seman-
tics. As an example, consider the QPT for the book doc-
ument in Fig. 6a. For the path /books//book/isbn, PROJ
would produce and materialize all elements corresponding
to book (and its subelements corresponding to ¢sbn). In con-
trast, we only produce book elements which have year subel-
ements whose values are greater than 1995, which is enforced
by the entire twig pattern. Second, instead of materializing
every element as in PROJ, we selectively materialize a (small)
portion of the elements. In our example, only the elements
corresponding to isbn and year are materialized. Finally,
the most important difference is that we construct the PDTs
by solely using indices, while PROJ requires full scan of the
underlying documents which is likely to be inefficient in our
scenario. Our experimental results in Sect. 7 show that our
PDT generation is more than an order of magnitude faster
then PROJ.

Our idea also appears similar to creating query-equivalent
documents (QED for short) proposed in [8]. Querying over
the PDTs produces the same sequence of result elements as
querying over the original documents except that our results
will be materialized separately; hence the PDTs are query-
equivalent to the underlying documents with respect to the
view query. There are, however, two key differences between
the construction algorithms. First, QED performs the DFS of
the structural pattern (similar to QPT) and exploits structural
joins to create the corresponding document structure. This
is similar to [13,33], and likely to be costly in our scenario.
Second, QED retrieves element contents (in the Pruning algo-
rithm) or the entire subtree (in the Lopping algorithm) during
query processing and fully materializes all result elements.
This is similar to [28] and is unnecessarily expensive since
only the top-K results need to be fully materialized.

We now illustrate more details of PDTs before presenting
our algorithms.

4.1 PDT illustration and definition

The key idea of a PDT is that an element e in the document
corresponding to anode n in the QPT is selected for inclusion
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only if it satisfies all three types of constraints: (1) an ances-
tor constraint, which requires that an ancestor element of e
that, if e is not the root node, corresponds to the parent of
n in the QPT should also be selected, (2) a descendant con-
straint, which requires that for each mandatory edge from
n to a child of n in the QPT, at least one child/descendant
element of e corresponding to that child of n should also be
selected, and (3) a predicate constraint, which requires that
if e is a leaf node, it satisfies all predicates associated with n.
Consequently, there is a mutual restriction between ancestor
and descendant elements. In our example, only reviews with
at least one isbn subelement are selected (due to the descen-
dant constraint), and only those isbn and content elements
that have a selected review are selected (due to the ancestor
constraint). Note that this restriction is not “local”: a content
element is not selected for a review if that review does not
contain an isbn element.

We now formally define notions of PDTs. We first define
the notion of candidate elements that only captures descen-
dant restrictions.

Definition 1 (candidate elements) Given a QPT Q, an
XML document D, the set of candidate elements in D asso-
ciated with a node n € Q, denoted by CE(n, D), is defined
recursively as follows.

— nisaleafnode in Q: CE(n, D) =
{v e D | tag name of v is n.tag A
the value of v satisfies all predicates in n.preds }.
— nis anon-leaf node in Q: CE(n, D) =
{v € D | tag name of v is n.tag A for every edge e in Q,
if e.parent is n and e.ann is ‘m’ (mandatory),
then Jec € CE(e.child, D) such that
(a) e.axis = ‘/” and v is the parent of ec, or
(b) e.axis = ‘//’ and v is an ancestor of ec }

Definition 1 recursively captures the descendant
constraints from bottom up. For example, in Fig. 6a, can-
didate elements corresponding to “review’” must have a child
element “isbn”. Now we define notions of PDT elements
which capture both ancestor and descendant constraints.

Definition 2 (PDT elements) Given a QPT Q, an XML doc-
ument D, the set of PDT elements associated with a node
n € Q, denoted by PE(n, D), is defined recursively as fol-
lows.

— nis the root node of Q: PE(n, D) = CE(n, D)
— nis the non-root node in Q: PE(n, D) =
{veD]|visinCE(n, D) A
for every edge e in Q, if e.child is n,
then Jvp €PE(e.parent, D) such that
(a) e.axis = /" and vp is the parent of v, or
(b) e.axis = ‘//’ and vp is an ancestor of v}
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Intuitively, the PDT elements associated with each QPT
node are first the corresponding candidate elements and hence
satisfy descendant constraints. Further, the PDT elements
associated with the root QPT node are just its candidate ele-
ments, because the root node does not have any ancestor con-
straints; the PDT elements associated with a non-root QPT
node have the additional restriction that they must have the
parent/ancestors that are PDT elements associated the parent
QPT node. For example, in Fig. 6a, each PDT element corre-
sponding to “content” must have a parent element that is the
PDT element with respect to “review”. Using the definition
of PDT elements, we can now formally define a PDT.

Definition 3 (PDT) Given a QPT Q, an XML document D,
and a set of keywords K, a PDT is a tree (N, E) where N is
the set of nodes and E is set of edges, which are defined as
follows.

— N =Uyep PE(q, D), and nodes in N are associated with
required values, tf values and byte lengths.

— E={(p,c)|p,careinN A pisanancestorofc Afg € N
s.t. p is an ancestor of q and q is an ancestor of c}

4.2 Proposed algorithms

We now propose our algorithm for efficiently generating
PDTs. The generated PDTs satisfy all restrictions described
above and contains selectively materialized element values.
The main feature of our algorithm is that it issues index look-
ups whose number is in proportion to the size of the query,
not the size of the underlying data, and only makes a single
pass over the relevant path and inverted lists indices.

At a high level, the development of the algorithm requires
solving three technical problems. First, how do we minimize
the number of index accesses? Second, how do we efficiently
materialize required element values? Finally, how do we effi-
ciently generate the PDTs using the information gathered
from indices? We describe our solutions to these problems
in turn in the next two sections.

4.2.1 Optimizing index probes and retrieving join values

To retrieve Dewey IDs and element values required in PDTs,
our algorithm invokes a query-dependent number of probes
on path indices. First, we issue index lookups for QPT nodes
that do not have mandatory child/descendant edges; note that
this includes all the leaf nodes. The elements corresponding
to these nodes could be part of the PDT even if none of its
descendants are present in the PDT according to the defi-
nition of mandatory edges [13]. Further, if a QPT node is
associated with predicates, the index lookup will only return
elements that satisfy the predicates. For instance, for the book
QPT shown in Fig. 6a, we only need to perform three index
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1: PrepareLists (QPT gpt, PathIndex pindez, InvertedIndex
iindex, KeywordSet kwds): (PathLists, InvLists)

2:  pathLists < (); invLists < ()

3:  for Node n in gpt do

4: p « PathFromRoot(n); newList «— ()

5: if n has a 'v’ annotation then

6: {Combining retrieval of IDs and values}

7 newList «— (n, pindex.LookUpIDV alue(p))
8: if n has no mandatory child/descendant edges then
9: newList «— (n, pindex.LookUpID(p))

10: end if

11: end if

12: if newList # null then pathLists.add(newList)

13:  end for

14:  for all k in kwds do

15: invLists «— invLists U (k, sindex.lookup(k))
16:  end for

17:  return (pathLists, invLists)

Fig. 7 Retrieving IDs and values

PrepareList():pathLists  values\

<
(/books//book/isbn, (1.1.1: “111-11-11117), (1.2.1: “121-23-1321"),... )
(/books//book/title,1.1.4,1.2.3,1.9.3, ...)

(/books//book/year, (1.2.6: “1996”), (1.6.1:"1997"), ...)

PrepareList():invLists tf values ~._

It N
(xmP",(1.2.3:1),, (1.3.4:2), ...) (“search”,(2.1.3:2), (2.5.1:1), ...)

Fig. 8 Results of PrepareLists()

lookups on path indices (shown in Fig. 5) for three paths in
QPT: /books//book [isbn,/books//book/year[.>1995], and
/books//bookttitle.

Second, for nodes with ‘v’ annotation, we issue separate
lookups to retrieve their data values (which may be combined
with the first round of lookups). The idea of retrieving val-
ues from path indices is inspired by a simple, yet important
observation that path indices already store element values in
(Path, Value) pairs. Our algorithm conveniently propagates
these values along with Dewey IDs. For example, consider
the QPT of the book document in Fig. 6a and the path indi-
ces in Fig. 5. For the path /books//book/isbn, we use its
path to look up the B+-tree index over (Path, Value) pairs
in the Path-Values table to identify all corresponding values
and Dewey IDs (this can be done efficiently because Path
is the prefix of the composite key, (Path, Value)); in Fig. 5,
we would retrieve the second and third rows from the Path-
Values table. Note that IDs in individual rows are already
sorted. We then merge the ID lists in both rows and generate
asingle list ordered by Dewey IDs, and also associate element
values with the corresponding IDs. For example, the Dewey
ID 1.1.1 will be associated with the value “111-111-1111".

Finally, for each query keyword, our algorithm returns the
relevant inverted index indices to obtain scoring information.
For example, for the keyword xml, the returned inverted list
contains Dewey ID 1.2.3 with its term frequency of xml.

Figure 7 shows the high-level pseudo-code of our algo-
rithm of retrieving Dewey IDs, element values and tf values.
The algorithm takes a QPT, Path Index, query keywords,

1: GeneratePDT (QPT gpt, PathIndex pindez, KeywordSet
kwds, InvertedIndex #index): PDT
pdt — 0
(pathLists, invLists) <« PrepareLists(qpt, pindex,
iindex, kwds)
for idlist € pathLists do
AddCTNode(CT.root, GetMinEntry(idlist), 0)
end for
while CT.hasMoreNodes() do
for all n € CT.MinIDPath do
q < n.QPTNode
if pathLists(q).hasNextID() A there do not exist
> 2 IDs in pathLists(q) and also in CT then
AddCTNode(CT.root, pathLists(q).NextMin(),
0)
12: end if
13: end for
14: CreatePDTNodes(CT.root, gpt, pdt)
15: end while
16:  return pdt

_ =
—

Fig. 9 Algorithm for generating PDTs

and Inverted Index as input, and first issues a path indices
lookup on nodes that have a ‘v’ annotation (lines 5-10),
to obtain the values and IDs. It then looks up path indices
for each QPT node that has no mandatory child/descendant
edges to obtain just Dewey IDs (lines 8—10). Finally, the
algorithm looks up inverted lists indices and retrieves the list
of Dewey IDs containing the keywords along with tf values
(lines 14-16). Figure 8 shows the output of PrepareList for
the book QPT (Fig. 6a). Note that the ID lists correspond-
ing to /books//book/isbn and /books//book/year con-
tain element values, and the ID lists retrieved from inverted
lists indices contain tf values.

4.2.2 Efficiently generating PDTs

In this section, we propose a novel algorithm that makes
a single “merge” pass over the lists produced by Prepar-
eList and produces the PDT. The PDT satisfies the ances-
tor/descendant constraints (determined using Dewey IDs in
pathLists) and contains selectively materialized element val-
ues (obtained from pathLists) and tf values w.r.t each query
keyword (obtained from invLists). For our running example,
our algorithm would produce the PDT shown in Fig. 6b by
merging the lists shown in Fig. 8.

The main challenges in designing such an algorithm are
(1) we must enforce complex ancestor and descendant con-
straints (described in Sect. 4.1) by scanning the lists of Dewey
IDs only once, (2) ancestor/descendant axes may expand to
full paths consisting of multiple IDs matching the same QPT
nodes, which adds additional complication to the problem.

The key idea of the algorithm is to process ids in Dewey
order. By doing so, it can efficiently check descendant restric-
tions because all descendants of an element will be clus-
tered immediately after that element in pathLists. Figure 9
shows the high-level pseudo-code of our algorithm which
works as follows. The algorithm takes in a QPT, path index,
and inverted index of the document, and begins by invoking
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PrepareList in order to collect the ordered lists of ids relevant
to the view. It then initializes the Candidate Tree (described
in more detail shortly) using the minimum ID in each list
(lines 4-6). Next, the algorithm makes a single loop over
the IDs in pathLists (lines 7-15), and creates PDT nodes
using information stored in the CT. At each loop, the algo-
rithm processes and removes the element corresponding to
the minimum ID in the CT. Before processing and removing
the element, it adds the next ID from the corresponding path
list (lines 8—12) so that we maintain the invariant that there
is at least one ID corresponding to each relevant QPT node
for checking descendant constraints.

Next the algorithm invokes the function CreatePDTNodes
(line 14) and checks if the minimum element satisfies both
ancestor and descendant constraints. If it does, we will cre-
ate it in the result PDT. If it satisfies only descendant con-
straints, we store it in a temporary cache (PdtCache) so that
we can check the ancestor constraints in subsequent loops. If
it does not satisfy descendant constraints and does not have
any children in the current CT, we discard it immediately. The
intuition is that in this case, since the CT already contains at
least one ID for each relevant QPT node (by the invariant
above), and since IDs are retrieved from pathList in Dewey
order, we can infer that the minimum element cannot have
any unprocessed descendants in pathLists; hence it will not
satisfy descendant constraints in all subsequent loops. The
algorithm exits the loop and terminates after exhausting IDs
in pathList and the result PDT contains all and only IDs that
satisfy the PDT definition.

Description of the candidate tree: The Candidate Tree, or
the CT, is a tree data structure. Each node cn in the CT stores
sufficient information for efficiently checking ancestor and
descendant constraints and has the following five compo-
nents:

— ID: the unique identifier of cn, which always corresponds
to a prefix of a Dewey ID in pathLists.

— QNode: the QPT node to which cn.ID corresponds.

— ParentList (or PL): alist of cn’s ancestors whose QNode’s
are the parent node of cn.QNode.

— DescendantMap (or DM):ONode— bit: a mapping con-
taining one entry for each mandatory child/descendant of
cn.QNode. For a child QPT node ¢, DM[c] = 1 iff cn has
a child/descendant node that is a candidate element with
respect to c.

— PdtCache: the cache storing cn’s descendants that satisfy
descendant restrictions but whose ancestor restrictions
are yet to be checked.

We now illustrate these components using CT shown in

Fig. 12a, which is created using IDs 1.1.1, 1.1.4, and 1.2.6,
corresponding to paths in pathLists shown in Fig. 8. First,
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1: AddCTNode(CTNode parent, DeweyID 4d, int depth)
2 newNode « null
3: if depth < id.Length then
4: curld«Prefix(id, depth); qNode<—QPTNode(curld)
5 if gNode = null then

AddCTNode(parent,id,depth+1)
6: else
7 newNode « parent.findChild(curld)
8: if newNode = null then
9: newNode « parent.addChild(curld, gNode)
10: Update the data value and tf values if required
11: end if
12: AddCTNode(newNode, id, depth+1)
13: end if
14:  end if
15:  if newNode#null A Vi, newNode.DM[i]=1 then
16: Vv nenewNode.PL, n.DM[newNode.QPTNode]«+1
17:  end if

Fig. 10 Algorithm for adding new CT nodes

every node has an ID and a QNode and CT nodes are ordered
based on their IDs. For example, the ID of the “books” node
is 1 which corresponds to a prefix of the ID 1.1.1, and the
id 1.1.1 corresponds to the QPT node “isbn”. The PL of
a CT node stores its ancestor nodes that correspond to the
parent QPT node. For instance, book1.PL = {books}. Note
that cn.PL may contain multiple nodes if cn.QNode is in
an ancestor/descendant relations. For example, if “/books//-
book” expands to “/books/books/book”, then book.PL would
include both “books”. Next, DM keeps track of whether a
node satisfies descendant restrictions. For instance,
book1.DM[year] = 0 because it does not have the mandatory
child element “year” while book2.DM[year] = 1 because
it does. Consequently, a CT node satisfies the descendant
restrictions (and therefore is a candidate element) when its
DM is empty (corresponding to QPT nodes without
mandatory child edges), or the values in its DM are all 1
(corresponding to QPT nodes with mandatory child edges).
PdtCache will be illustrated in subsequent steps shortly. Note
that for ease of exposition, our illustration focuses on creat-
ing the PDT hierarchy; the atomic values and tf values are
not shown in the figure but bear in mind that they will be
propagated along with Dewey IDs.

We now describe the Candidate Tree and individual steps
of the algorithm in more detail.

Initializing the candidate tree: As mentioned earlier, the
algorithm begins by initializing the CT using minimum IDs
in pathLists. Figure 10 shows the pseudo-code for adding
a single Dewey ID and its prefixes to the CT. A prefix is
added to the CT if it has a corresponding QPT node and is
not already in the CT (lines 6—13). In addition, if a prefix is
associated with a ‘c’ annotation, the tf values are retrieved
from the inverted lists (line 10).

Figure 12a, which we just described, shows the initial CT
for our example, which is created by adding minimum IDs of
paths in pathLists shown in Fig. 8. Note that for ease of expo-
sition, our algorithm assumes each Dewey ID corresponds to
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1: CreatePDTNodes (CTNode n, QPT g¢pt, PDT
parentPdtCache)

2: if Vi, n.DMJi] = 1 An.ID not in parentPdtCache then

3: pdtNode = parentPdtCache.add(n)

4:  end if

5:  if n.HasChild() = true then

6: CreatePDTNodes(n.MinIdChild, gpt, n.PdtCache)

71 else

8: {Handle pdt cache and then remove the node itself}

9: for x in n.pdtCache do

10: {Update parent list and then propagate x to
parentPdtCache}

11: if n € x.PL then

12: x.PL.remove(n)

13: if 34, n.DM[i] = 0 A x.PL = ) then

n.pdtCache.remove(x)

14: else

15: x.PL.replace(n, n.PL)

16: end if

17: end if

18: if x € pdtCache then Propagate x to
parentPdtCache

19: end for

20: n.RemoveFromCT()

21:  end if

Fig. 11 Processing CT.MinIDPath

a single QPT node; however, when the QPT contains repeat-
ing tag names, one Dewey ID can correspond to multiple
QPT nodes. We discuss how to handle this case in Sect. 5.

Description of the main loop: Next the algorithm enters
the loop(lines 7—15 in Fig. 9) which adds new Dewey IDs to
the CT and creates PDT nodes using CT nodes. At each loop,
the algorithm ensures the following invariant: the Dewey IDs
that are processed and known to be PDT nodes are either
in the CT or in the result PDT (hence we do not miss any
potential PDT nodes); and the result PDT only contains IDs
that satisfy the PDT definition.

As mentioned earlier, at each loop we focus on the element
corresponding to the minimum ID in the CT and its ances-
tors (denoted by MinIDPath in the algorithm). Specifically,
we first retrieve next minimum IDs corresponding to QPT
nodes in MinIDPath(Step 1). We then copy IDs in MinID-
Path from top down to the result PDT or the PDT cache (Step
2). Finally, we remove those nodes in MinIDPath that do not
have any children (Step 3). We now describe each step in
more detail.

Step 1 (adding new IDs) In this step, the algorithm adds the
current minimum IDs in pathLists corresponding to the QPT
nodes in CT.MinIDPath. In Fig. 12a, this path is “/books
/fbook/isbn” and Fig. 12b shows the CT after its next
minimum ID 1.2.1 is added (for reason of space, this fig-
ure and the rest only show the QPT node and ID).

Step 2 (creating PDT nodes) In this step, the algorithm cre-
ates PDT nodes using CT nodes in CT.MinIDPath from top
down (Fig. 11, lines 2—4). We first check if the node satisfies
the descendant constraints using values inits DM. In Fig. 12b,
DM of the element “books” has value 1 in all entries; hence

dummy root Q

DM: DescendantMap
QNode: books PL: ParentList
ID: 1

DM:(book, 1)

book1

QNode: book
ID: 1.1
DM:(year: 0)

ID: 1.2
DM: (year, 1)
PL:

QNode: title
ID:1.1.4
DM: null

PdtCache; |
e®isbn,1.1.1i
efitle, i

PdtCache: | e {@book,1.2 |
eisbn,1.2,1 | ADOOKS, e {@isbn.1.2.1 ia-—~RDOOKs/1
otitle,1.2.3 ! | etitle,1.2.3 !
eyear,1.2.6/] i eyear,1.2.6 |

(e) Before removing book,1.2 (f) Propagating nodes in pdt cache

Fig. 12 Generating PDTs

we will create its ID in the PDT cache passed to it(lines 2—4),
which is the result PDT.

The algorithm then recursively invokes CreatePDTNodes
on the element book1 (line 6). Its DM has value 0 and hence it
is not a PDT node yet. Next, we find its child element “isbn”
has an empty DM and satisfies the descendant restrictions.
Hence we create the node “isbn” in bookl.PdtCache. Fig-
ure 12c illustrates this step. In general, the pdt cache of a CT
node stores the ids of descendants that satisfy the descendant
restrictions; ancestor restrictions are only checked when the
CT node is removed (in Step 3).

Step 3 (removing CT nodes) After the top down process-
ing, the algorithm starts removing nodes from bottom up
(Fig. 11, line 7-29). For instance, in Fig. 12c, after we pro-
cess and remove the node “title”, we will remove the node
“book” because it does not have children and it does not sat-
isfy descendant constraints. Figure 12d shows the CT at this
point. Note that since we process nodes in id order, we can
infer that the descendant constraints of this node will never
be satisfied in the future.

Another key issue we consider before removing a node
is to handle nodes in its pdt cache. In our example, the pdt
cache contains two nodes “isbn” and “title”. As mentioned
earlier, they both satisfy descendant constraints. Hence we
only need to check if they satisfy ancestor constraints, which
is done by checking nodes in their parent lists. If those parent
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nodes are known to be non-PDT nodes, which is the case for
“isbn” and “title”, then we can conclude the nodes in the
cache will not satisfy ancestor restrictions, and can hence be
removed (line 13). Otherwise the cache node still has other
parents, which could be PDT nodes, and will be propagated
to the pdt cache of the ancestor. Fig. 6e and f illustrates this
case in our running example, which occurs when we remove
the node “book” with ID 1.2.

Finally, at the last step of the algorithm when we remove
the root node “books”, all IDs in its pdt cache will be prop-
agated to the result PDT. In summary, we remove a node
(and its ID) only when it is known to be a non-PDT node,
which is either a CT node that does not satisfy descendant
constraints, or a node in a pdt cache that does not satisfy
ancestor constraints. Further, we only create nodes satisfy-
ing descendant constraints in the pdt cache, and always check
ancestor constraints before propagating them to ancestors in
the CT. Therefore it is easy to verify the invariant of the main
loop holds.

Scoring & generating the results.  Asmentionedin Sect. 3.1,
our system transforms the original fn:doc() which reads input
document to fn:pdt() which reads the PDT, and transforms
the ftcontain() in the traditional evaluator to our customized
Scoring & Materialization Module. The remaining part of the
evaluator is reused to handle the query processing to create
the projected view. This is shown in Fig. 3. Once the PDTs
are generated (e.g., the PDT of our running example is shown
in Fig. 6b), they are fed to a traditional evaluator to produce
the temporary results. which are then sent to the Scoring &
Materialization Module. Using just the pruned results with
required tf values and byte lengths (encoded as XML attri-
butes as shown in Fig. 6b), this module first enforces con-
junctive or disjunctive keyword semantics by checking the tf
values, and then computes scores of the view results. Specif-
ically, for a view result s, score(s) is computed as follows:
first calculate 7 f (s, k) for a keyword k by aggregating values
of tf(s', k) of all relevant base elements s’; then calculate
the value ¢d f (k) by counting the number of view results con-
taining the keyword k; next use the formula in Sect. 2.2 to
obtain the non-normalized scores, which are then normalized
using aggregate byte lengths of the relevant base elements.

The Scoring & Materialization Module then identifies the
ordered view results with top-K scores. Only after the final
top-K results are identified are the contents of these results
retrieved from the document storage system; consequently,
only the contents required for producing the results are
retrieved.

5 Generalizations and optimizations

In this section, we describe substantial generalizations and
optimizations to the algorithms proposed in Sect. 4. The gen-
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eralized algorithms handle a larger class of complex XML
views that include descendant axes, element wild cards, and
repeating element tag names.

If an XML view definition contains descendant axes and
element wild cards, our path indices will expand them to
possibly multiple full paths (Sect. 3.2). The main challenge
in this case is that, a single Dewey ID can match multiple
QPT nodes. Further, different QPT nodes capture different
ancestor/descendant constraints. Hence they must be treated
separately. For example, if the QPT path is “//a //a” and the
corresponding full data path is “/a /a /a”, then the second “a”
in the full path matches both nodes in the QPT path. To han-
dle this case, we extend the structure of CT node to contain
a set of QNodes, each of which is associated with their own
InPdt, PL and DM.

Further, the current algorithm always copies IDs that sat-
isfy the descendant constraints in the pdt cache. This can be
optimized by immediately creating the IDs in the result PDT
if they also satisfy the ancestor restrictions. For this purpose,
we add a boolean flag InPdt to the CT node, set InPdt to be
true when the ID is created in the result PDT, and create the
descendant ID in the PDT when one of its parents is in the
PDT (InPdt = true).

Now we describe our algorithms that handle these exten-
sions and optimizations in more detail.

Description of the algorithm: Figure 13 shows the high-
level pseudo-code of our generalized and optimized algo-
rithm. The algorithm takes in a QPT, path index, and inverted
index of the document, and generates the PDT. It begins by
invoking PrepareList() to collect the lists of ids relevant to
the view, and then initializes the Candidate Tree using the
minimum Dewey ID in each list (lines 6-8).

Now we focus on the generalization part of the algorithm.

Extension of candidate tree: As mentioned earlier, when
QPT contains repeating tag names and/or descendant axes,
one document node can correspond to multiple QPT nodes.
In these cases, we have to store all of the corresponding QPT
nodes because in general, different QPT nodes capture dif-
ferent ancestor and descendant restrictions. To handle this in
CT, we map each CT node to a set of QPT nodes, namely
CTQNodeSet. Since the notion of parent and descendants are
associated with each QPT node, we also remove them from
the top-level structure of CT node. Formally, each node cn
in CT has the following three components:

— ID: the unique identifier of cn, which always corresponds
to a prefix of a Dewey ID in pathLists.

— CTQNodeSet: the set of QPT nodes to which cn.ID cor-
responds.

— PdtCache: the cache storing cn’s descendants that satisfy
descendant restrictions but whose ancestor restrictions
are yet to be checked.
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1: GeneratePDT (QPT gpt, PathIndex pindez, KeywordSet
kwds, InvertedIndex #index): PDT

2 pdt «— 0

3 (pathLists, invLists) «— PrepareLists(gpt, pindex,
iindex, kwds)

4 {Initialize CT}

5:  for idlist € pathLists do

6: AddCTNode(CT.root, GetMinEntry(idlist), 0)

7:  end for

8 while CT.hasMoreNodes() do

9: {Adding ids corresponding to the left most path}

10: Imp «— CT.LeftMostPath

11: for all cqn € lmp do

12: for all gn in cqn.CTQNodes where 3l € pathLists,

1.QNode = cqn do
13: if curList.hasNextID() then
14: AddCTNode(CT.root,
curList.GetNextMinEntry(), 0)

15: end if

16: end for

17: end for

18: CreatePDTNodes(CT.root, gpt, pdt, pdt)

19: end while
20: return pdt

Fig. 13 Algorithm for generating PDTs

1: AddCTNode(CTNode parent, DeweylID id, int depth)

2 if depth < id.Depth then

3 curld < Prefix(id, depth); gNodes <« QNodes(curld)
4: if gNodes = ) then AddCTNode(parent,id,depth+1)
5: else

6: newNode «— parent.findChild(curld)

7 if newNode = null then

8 newNode « parent.addChild(curld, gNodes)

9: Initialize newNode.CTQNodeSet using qNodes
10: Update the data value and tf values if required
11: end if
12: end if
13: AddCTNode(newNode, id, depth+1)

14:  end if

15: for all q in gNodes do

16: if Vi, q.DM[i]=1 then

17: set DM[q] to 1 for nodes in q.PL
18: end if

19: end for

Fig. 14 Algorithm for adding new CT nodes

Each node in CTQNodeSet has the following members:

— QNode: one of the QPT nodes to which cn.ID corre-
sponds.

— ParentList (or PL): alist of cn’s ancestors whose QNode’s
are the parent node of cn.QNode.

— DescendantMap (or DM):QONode— bit: a mapping con-
taining one entry for each mandatory child/descendant of
cn.QNode. For a child QPT node ¢, DM[c] = 1 iff cn has
a child/descendant node that is a candidate element with
respect to c.

— InPdt: a boolean flag indicating whether cn € PE(q, D);

Figure 16b illustrates the new structure of a CT node that
will be used later when we walk through the algorithm.

Generalization and optimization of the algorithm: For
completeness we include the full algorithms in Figs. 13, 14

1: CreatePDTNodes (CTNode n, QPT gpt, PDT pdt, PDT
parentPdtCache)
{Create PDT nodes using CT nodes in left most path}
2 for all q in n.CTQNodes where q.InPdt = false do
3 if Vi, .DM][i] = 1 then
4 if ¢.PL = 0 VvV 3 p € q.PL, p.InPdt = true then
5: q.InPdt = true; Write n.Id to pdt if n.id ¢ pdt
6: else
7 pdtCacheNode = parentPdtCache.find(n.Id)
8 if parentCacheNode = null then pdtCacheNode
= parentPdtCache.add(n.Id)
9: for all q in n.CTQNodes where Vi, g.DMJi] = 1
do
10: pdtCacheNode.PL.add(q.PL)
11: end for
12: end if
13: end if

14:  end for
15:  if n.HasChild() = true then

16: {Recursively handle the left most child(LMC)}

17: CreatePDTNodes(LMC, gpt, pdt, n.PdtCache)

18:  else

19: {Handle pdtCache and then remove the node itself}

20: for x in n.pdtCache do

21: if x.PLx = 0 v dp € x.PL, p.InPdt = true then

Write x.id to pdt if z.id ¢ pdt

22: else

23: {Update parent list and then propagate x to
parentPdtCache}

24: for all q in n.CTQNodes where q in PL(x) do

25: x.PL.remove(q)

26: if 3i, .DM[i] = 0 A PL(x) = § then

n.pdtCache.remove(x)

27: else

28: x.PL.replace(q, q.PL)

29: end if

30: end for

31: if x € pdtCache then PropagatePDT(x,
parentPdtCache)

32: end if

33: end for

34: n.RemoveFromCT()

35:  end if

Fig. 15 Algorithm for generating PDTs

and 15. The main generalization lies in checking all nodes
in CTQNodeSet for structural constraints. The main optimi-
zation is achieved by directly creating qualified CT nodes in
PDT and hence bypassing the unnecessary use of pdt cache.
Specifically, in Fig. 15, lines 2-5, the algorithm processes
the CT nodes in the left most path from top down. If a CT
node n in the left most path has an item q € n.CTQNodeSet
s.t. ¢.DM has the value 1 in all entries, then we know that
q satisfies the descendant restrictions. Further, if q.PL = ¢
or dp € q.PL, q.InPdt = true, then we can infer that q also
satisfies the ancestor restrictions. Therefore we immediately
create the corresponding node in the result PDT.

Now we walk through the algorithm using the QPT and
ID lists shown in Fig. 16a to illustrate the main generaliza-
tions and optimizations. The algorithm first initializes CT
by merging the minimum Dewey IDs 1.1.1.1, 1.1.1.2 and
1.3.1.3 corresponding to the full path “a/x /b /c”, “a/x /b /d”
and “a /x /b /e” respectively (lines 6-8). In AddNewCTN-
ode(), CT nodes are created for distinct Dewey ID compo-
nents that match a QPT node. Note the IDs corresponding to
the tag “x” is pruned from the CT because they are not rele-
vant to our view, and the structural relations of other nodes
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Fig. 16 Generating PDT

can still be easily determined using their respective Dewey
IDs.

Further, as mentioned earlier, new nodes will update the
Descendant Map DM of nodes in their PL. Figure 16b shows
the initial CT. Note for reason of space, we only show the
full content of the CT node for nodes a(1) and b(1.1.1). As
shown, the element b(1.1.1), which corresponds to the QPT
nodes b1 and b2 (in Fig. 16a), contains two items c1 and c2
in its CTQNodeSet. c1.DM|[c] = 1 because there is a child
nodes c(1.1.1.1) corresponding to the QPT node c; however,
c2.DMJe] = 0 because it does not have a child node corre-
sponding to the QPT node e. Also, due to this, in the root
element a(1), c1.DM[b2] = 0. Note that at this point the
invariant holds because all IDs are in the CT and the result
PDT is empty.

After the CT is initialized, the algorithm begins creating
the result PDT by repeatedly invoking CreatePDTNodes
(lines 9-20). As mentioned earlier, it first retrieves next IDs
corresponding to the left most path “a//b/c”. Figure 16¢ shows
the content of the CT at this point. The algorithm then inspects
CT nodes from top down on the current leftmost path because
it most likely contains the nodes that are known to be PDT or
non-PDT nodes with minimum IDs. In our example, it first
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inspects the root node a(1) (lines 2-4) and determines it is not
a PDT node (yet) because all items in its CTQNodesSet do
not satisfy the descendant restrictions (DM’s have the value
0). Hence we just recursively call CreatePDTNodes on the
leftmost child »(1.1.1) (line 17). The item c1 in this node
satisfies the descendant restrictions (DM has the value 1 in
all entries), but none of its parent is in the pdt. Hence it is
not known whether it should indeed be included in the result
PDT. Thus we temporarily create it in the pdt cache of its
parent node, a(1). We similarly handle the node (c, 1.1.1.1),
and then remove it from the CT because it is a leaf node.
Figure 16d shows the content of the CT after this step. Since
we keep all the IDs in the candidate tree, the invariant still
holds.

Now we enter the next loop and add the next minimum ID
corresponding to a//b/d, which is 1.3.1.2. Figure 16e shows
the content of the CT. Note after adding this id, the node
a(1) now satisfies the descendant restriction because the node
b(1.3.1) is the candidate element of both QPT nodes b1 and
b2. Hence in the second phase, we will write the id 1 to
the result PDT. And similarly, we will write id 1.1.1 to the
result PDT. Next we arrive at the node d(1.1.1.2). Since its
parent item is c2 in the node b(1.1.1) and c2.inPdt = false,
which implies that the structural restrictions corresponding
to ¢2.QNode are not satisfied. Therefore we cannot write the
id 1.1.1.2 to the result PDT even though the parent id 1.1.1
is in the PDT. Hence we write this ID to the pdt cache of the
node b(1.1.1). Figure 16g shows the content of the CT. We
then remove the node 1.1.1.2 since it is a leaf node. Next we
will remove the node b(1.1.1). First we check nodes in its
pdt cache. There are two items, c¢(1.1.1.1) and d(1.1.1.2). We
will write c(1.1.1.1) to the result PDT because its parent is
the item c1 and cl.inPdt = true; however, we will not output
the node d(1.1.1.2) because its parent c2 does not and will
not satisfy the descendant restrictions. This illustrates how
the mutual restrictions are enforced. Figure 16f shows the
content of the PDT at this point. It is easy to verify that at
this point the invariant still holds. The IDs that satisfy the
PDT definition are 1, 1.1.1, 1.1.1.1, 1.3.1, 1.3.1.1, 1.3.1.2,
and 1.3.1.3. The first three are in the result PDT, and the rest
are in the CT. And the result PDT only contains the first three
IDs.

5.1 Complexity of algorithms

The runtime of GeneratePDT is O (Ngdf + Nqd* + Nd> +
Ndkc) where N is the number of IDs in pathLists, d is the
depth of the document, ¢ and f are the depth and maximal
fan-out of the QPT, respectively, k is the number of keywords,
and c is the average unit cost of retrieving tf values. Intui-
tively, the top-down and bottom-up processing dominate the
overall cost. Ngdf + Ngd?* determines the cost of the top-
down processing: there can be Nd ID prefixes; every prefix



Efficient keyword search over virtual XML views

557

can correspond to g QPT nodes; every QPT node can have d
parent CT nodes and f mandatory child nodes. Nd* deter-
mines the cost of bottom-up processing, since every prefix
can be propagated d times and can have d nodes in its parent
list. Finally, Ndkc determines the cost for retrieving tf values
from the inverted index.

Note that this is a worst case bound which assumes mul-
tiple repeating tags in queries (¢ QPT nodes), and repeat-
ing tags in documents (d parent nodes). In most real-life
data, these values are much smaller (e.g., DBLP,* SIGMOD
Record,? and INEX), as also seen in our experiments.

6 Correctness of GeneratePDT

We can prove the following correctness theorem:

Theorem 1 (Correctness) Given a set of keywords KW, an
XQuery query Q and a database D € UD, if PDTDB = {Gen-
eratePDT(QPT, D.Pathindex, D.InvertedIndex, KW) | QPT
€ GenerateQPT(Q) }, then

— I(Q(PDTDB)) = Q(D)(The result sequences, after being
transformed, are identical)

— Ye € Q(PDTDB), ¢’ € Q(D), I(e) = ¢ =
PDTByteLength(e) = len(e’) (The byte lengths of each
element are identical)

— Ve € Q(PDTDB), ¢’ € Q(D), I{e) = ¢ = (Vk € KW,
PDTTF(e,k) = tf(e’,k)) (The term frequencies of each key-
word in each element is identical)

Note that in Theorem 1, I is the function transforming
Dewey IDs to node contents, PDTTF is the tf calculation
function, and PDTByteLength is the byte length calculation
function, len(e) is the byte length of a materialized element
e, and using the notations of UD, Q, S defined in Sect. 2.1.

To prove Theorem 1, it suffices to show the correctness
of the equivalence of the query results; when this holds, the
equivalence of byte lengths and term frequencies are obvious
since the algorithm merely propagates these values and does
simple aggregation during element constructions.

The full proof of the equivalence of the query results is
quite complex and we refer the reader to Appendix A for
details. Here we just briefly describe some intuitions.

First, as shown in [13] and Sect. 4.1 PDTs by definition
are query-equivalent to the original documents. Hence it suf-
fices to show that GeneratePDT produces PDTs that satisfy
the definitions. In other words, we need to show that the
result PDTs contain and only contain Dewey IDs that satisfy
all structural constraints.

4 http://dblp.uni-trier.de/xml/.
3 http://acm.org/sigmod/record/xml/.

let fview :=
for $aurthor in fn:doc(authors.xml)/author
return <author_articles>
<author> {#author//fnm},{$author//snm} </author>,
{for #article in fn:doc(x)/books/journal/article
where Farticle//au//fnm = $author/fnm
and farticle//au//snm = Fauthor/snm
return farticle}
< /author_articles>

Fig. 17 INEX view

The core part of the algorithm GeneratePDT is the while-
loop (lines 9-20 in Fig. 13) which keeps creating PDT nodes
using nodes in the candidate tree, and creating new nodes in
the candidate tree using the next available Dewey ID in the
id lists. We can prove that (Lemma 1 in Appendix A) after
loop #t, if a Dewey ID is a result PDT node based on the ids
we have processed by the time t, then the Dewey ID must be
in the current PDT, CT, or pdt caches of CT. Further, if for
any possible completion of the id lists we have processed,
this Dewey ID does not satisfy all structural constraints, then
it is not in the current PDT, CT, or pdt caches of CT. Hence
when the algorithm finishes, both CT and PDT caches are
empty, and the result PDT contains and only contains Dewey
IDs that satisfy all structural constraints.

7 Experiments

In this section, we show the experimental results of evaluating
our proposed techniques developed in the Quark open-source
XML database system.

7.1 Experimental setup

In our experiments, we used the S00MB INEX dataset which
consists of a large collection of publication records. The
excerpt of the INEX DTD relevant to our experiments is
shown below.

<!ELEMENT books
<!ELEMENT journal
<!ELEMENT article
<!ELEMENT fm

(journal*)>

(title, (secl|article|sbt)*)>
(fno, doi?, fm, bdy)>
(hdr?, (edinfo|au|kwd|fig)*)>

We created a view in which articles (article elements) are
nested under their authors (au elements), and evaluated our
system using this view.

The default view definition is shown in Fig. 17. Note that
authors.xml contains all authors extracted from the collec-
tion. fn:doc(*) returns all document nodes in the collection.
We also assume that there are no duplicate co-author names
in the same article, which is the case in the INEX dataset.

When running experiments, we generated the regular path
and inverted lists indices implemented in Quark (~1GB
each).

We evaluated the performance of four alternative
approaches:
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Table 1 Experimental parameters

Parameter Values (default in bold)
Size of Data(x 100M B) 1,2,3,4,5
# keywords 1,2,3,4,5

Selectivity of keywords Low(IEEE, Computing),

Medium (Thomas, Control),

High (Moore,Burnett)
# of joins 0,1,2,3,4
Join selectivity 1X, 0.5X, 0.2X, 0.1X
Level of nestings 1,2,3,4
# of results(K in top-K) 1, 10, 20, 40

Avg. Size of View Element 1X, 2X, 3X, 4X, 5X

Baseline: materializing the view at query time, and evaluat-
ing keyword search queries over views implemented using
Quark.

TLC: an implementation of GTP with TermJoin for keyword
searches and implemented using Timber [33], and with opti-
mizations of GTP on aggregations.

Efficient: our proposed keyword query processing architec-
ture (Sect. 3.1) developed using Quark, with all optimizations
and extensions implemented (Sect. 5).

Proj: techniques of projecting XML documents [28].

We have implemented scoring in Efficient. Recall that our
score computation (Sect. 4.2.2) produces exactly the same
TF-IDF scores as if the view was materialized; hence, we
do not evaluate the effectiveness of scoring using precision-
recall experiments.

Our experimental setup was characterized by parameters
in Table 1. # of joins is the number of value joins in the view.
Join selectivity characterizes how many articles are joined
with a given author; the default value 1X corresponds to the
entire S00MB data; we decrease the selectivity by replicat-
ing subsets of the data collection. Level of nestings speci-
fies the number of nestings of FLOWR expressions in the
view; for value 1, we remove the value join and only leave
the selection predicate; for the default value 2, we associate
publications under authors; for the deeper views, we create
additional FLOWR expressions by nesting the view with one
level shallower under the authors list. The rest of the parame-
ters are self-explanatory. In the experiments, when we varied
one parameter, we used the default values for the rest.

The INEX data is not recursive by nature and hence our
default view based on INEX does not involve repeated tag
names. In order to evaluate the effect of recursive tag names,
we created a synthetic dataset using a tool similar to the XML
data generator used in Niagara [1] so that we can vary the
number of recursions. The generated data essentially con-
tains repeated tags of /a/b/c and the view queries consist of
//allb. Further, when varying the number of recursions, to fix
the size and the depth of the documents, we insert irrelevant
elements to documents with smaller number of recursions.
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All experiments were run on an Intel 3.4Ghz P4 proces-
sor running Windows XP with 2GB of main memory. The
reported results are the average of five runs with standard
deviation less than 10%.

7.2 Performance results
7.2.1 Varying size of data

Figure 18 shows the performance results when varying the
size of the data. As shown, it takes EFFICIENT less than 5 sec-
onds to evaluate a keyword query without materializing the
view over the S00MB data. Second, the run time increases
gracefully with the size of the data (note that the y-axis is
in log scale), because the index I/O cost and the overhead
of query processing increases linearly. This indicates that
EFFICIENT is a scalable and efficient solution.

In contrast, BASELINE took 59 seconds even for a 13MB
data set, which is more than an order of magnitude slower
than EFFICIENT. Note the run time includes 58 seconds spent
on materializing the view, and 1 second spent on the rest of
query evaluation, including tokenizing the view and evaluat-
ing the keyword search query.

Further, Fig. 18 shows that EFFICIENT performs ~ ten
times faster than TLC. Note that Fig. 18 only shows the time
spent by TLC on structural joins and accessing the base data
(for obtaining join values); it does not include the time for the
remaining query evaluation since they were inefficient and
did not scale well (the total running time for TLC, including
the time to perform the value join, was more than 5min on
the 100MB data set). TLC is much slower mainly because
it relies on (expensive) structural joins to generate the docu-
ment hierarchy, and because it accesses base data to obtain
join values.

Finally, while PROJ merely characterizes the cost of gener-
ating projected documents (the cost of query processing and
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post-processing are not included), its runtime is ~15 times
slower than EFFICIENT. The main reason is that PROJ scans
base documents which leads to relatively poor scalability.
For the rest of the experiments, we focus on EFFICIENT
since other alternatives performed significantly slower.

7.2.2 Evaluating overhead of individual modules

Figure 19 breaks down the run time of EFFICIENT and shows
the overhead of individual modules—PDT, Evaluator, and
Post-processing. As shown, the cost of generating PDTs
scales gracefully with the size of the data. Also, the over-
head of post-processing, which includes scoring the results
and materializing top-K elements, is negligible (which can be
barely seen in the graphs). The most important observation
is that the cost of the query evaluator dominates the entire
cost when the size of the data increases.

7.2.3 Varying other parameters

Varying # of keywords. Figure 20 shows the performance
results when varying the number of keywords. The run time
for EFFICIENT increases slightly because it accesses more
inverted lists to retrieve tf values.
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Varying # of joins.  Figure 21 shows the performance results
when varying the number of value joins in the view definition.
As shown, the run time increases with the number of joins
mainly because the cost of the query evaluation increases.
The run time increases most significantly when the number
of joins increases from 0 to 1 for two reasons. First, the case
of 0 joins only requires generating a single PDT while the
other requires two. More importantly, the cost of evaluating
a selection predicate (in the case of 0 joins) is much cheaper
than evaluating value joins.

Varying # of Recursions.  Figure 22 shows the performance
results when varying the number of recursions in the doc-
uments. This experiment shows that the run time increases
linearly with the number of recursions, while the overhead
of the query evaluator grows relatively faster than other
modules.

Other results. We also varied the size of the view ele-
ment, the selectivity of keywords, the selectivity of joins, the
level of nestings, and the number of results; the performance
results (available in [38]) show that our approach is efficient
and scalable with increased size of elements. Finally, the size
of PDTs generated with respect to the entire data collection
(500MB) is about 2MB, which indicates that our pruning
techniques are effective.
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8 Related work

There has been a large body of work in the information
retrieval community on scoring and indexing [23,24,35,40].
However, they make the assumption that the documents being
searched are materialized. In this paper, we build upon exist-
ing scoring and indexing techniques and extend them for
virtual views. There has also been some recent interest on
context-sensitive search and ranking [7], where the goal is to
restrict the document collection being searched at run-time,
and then evaluate and score results based on the restricted col-
lection. In our terminology, this translates to ranked keyword
search over simple selection views (e.g., restricting searches
to books with year > 1995). However, these techniques do
not support more sophisticated views based on operations
such as nested expressions and joins, which are crucial for
defining even simple nested views (as in our running exam-
ple). Supporting such complex operations requires a more
careful analysis of the view query and introduces new chal-
lenges with respect to index usage and scoring, which are the
main focus of this paper.

In the database community, there has been a large body
of work on answering queries over views (e.g., [9,19,37]),
but these approaches do not support (ranked) keyword search
queries. There has also been a lot of recent interest on ranked
query operators, such as ranked join and aggregation opera-
tors for producing top-k results (e.g., [11,25,34]), where the
focus is on evaluating complex queries over ranked inputs.
Our work is complementary to this work in the sense that we
focus on identifying the ranked inputs for a given query (using
PDTs). There are, however, new challenges when applying
these techniques in our context and we refer the reader to the
conclusion for details.

GTP [13] with TermJoin [2] were originally designed to
integrate structure and keyword search queries. Since it is a
general solution, it can also be applied to the problem of key-
word search over views. However, there are two key aspects
that make GTP with TermJoin less efficient in our context.
First, GTP and TermJoin use relatively expensive structural
joins to reconstruct the document hierarchy. Second, GTP
requires accessing the base data to support value joins, which
is again relatively inefficient. In contrast, our approach uses
path indices to efficiently create the PDTs and retrieve join
values, which leads to an order of magnitude improvement
in performance (Sect. 7).

Finally, our PDT generation technique is related to the
technique for projecting XML documents [28]. The main
difference is that we use indices to generate PDTs, which
leads to a more than tenfold improvement in performance.
We refer the reader to Sect. 4 for other technical differences
between the two approaches. Our technique is also related to
the projection operator in Timber [26] and lazy XSLT trans-
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formation of XML documents [36], which, like PROJ, also
access the base data for projection.

9 Conclusion and future work

We have presented and evaluated a general technique for eval-
uating keyword search queries over views. Our experiments
using the INEX data set show that the proposed technique is
efficient over a wide range of parameters.

There are several opportunities for future work. First,
instead of using the regular query evaluator, we could use
the techniques proposed for ranked query evaluation (e.g.,
[11,18,25]) to further improve the performance of our sys-
tem. There are, however, new challenges that arise in our
context because XQuery views may contain non-monotonic
operators such as group-by. For example, when calculating
the scores of our example view results, extra review ele-
ments may increase both the tf values and the document
length, and hence the overall score may increase or decrease
(non-monotonic). Hence existing optimization techniques
based on monotonicity are not directly applicable. Second,
our proposed PDT algorithms may be applied to optimize
regular queries because the algorithms efficiently generate
the relevant pruned data, and only materialize the final results.
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Appendix A: Proofs of GeneratePDT

In this section, we formally prove the correctness of the gen-
eralized algorithm GeneratePDT. We refer the reader to [38]
for the proof of correctness of GenerateQPT.

Specifically, we show that given a QPT, the algorithm
GeneratePDT generates the correct PDT that conforms to
our PDT definition. Theorem 2 formally describes the cor-
rectness of GeneratePDT.

We first introduce some notations. Given a QPT Q, a
database D, a node d € Nodes(D), an environment § €
UE(D, Q), we use (d.PathIndex) and d.Invindex to denote
the path indices and inverted indices associated with T (d),
respectively. Given a QPT Node gn, d.PathIndex.LookUp(qn)
returns an ordered list of node ids that correspond to the root
to leaf path leading to gn in Q. Each node in the list also
satisfies the predicates associated with qn. Given a keyword
k, d.InvIndex returns a list of node ids that contains the key-
word, along with the tf value.

The following Theorem 2 shows the correctness of the
algorithm GeneratePDT:
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Theorem 2 Given a set of keywords KW, a QPT Q, an XML
database D, an environment § € UE (D, Q), GeneratePDT
(Q, 8(Q.root).Pathindex, &(Q.root).Invindex, KW) =
PDT(Q, KW, §).

A.1 Notations
We now introduce more notations before proving Theorem 2.
A.1.1 Prefixes

Given a set of keywords KW, a QPT O, an XML database D,
an environment § € UE(D, Q), §(Q.root) = d, (strLists,
invLists) =PrepareList(Q, d.Pathlndex, d.Invindex, KW). At
a given time # t, we say H(¢, strLists) = {id € [|l €
strLists A id is retrieved by the time # t } is the set of ids that
has been retrieved from str List s by the time # ¢ (including ).
In our algorithm, t corresponds to the number of loops (lines
9-20 in Fig. 13).

Next, given a QPT node ¢ in Q, for all ¢ in ancestor nodes
of g, and a Dewey ID did in strLists corresponding to g,
we use Prefix(q,did, q’) to denote the set of prefixes of
did that corresponds to ¢’. Note Prefix(q, did, q’) is a set
because when the path containing ¢ and ¢’ have the axis *//,
there can be multiple matchings of ¢’ in prefixes of did.

Further, VI € L, we say Prefix(l) = {x € Prefix(1.QNode,
lid, q) | lid € 1, q € anc(1.QNode)} is the set of prefixes of ids
in 1 w.r.t .QNode, and Prefix(L) = {x € Prefix(l) | 1 € L}. is
the set of prefixes of ids in H(t, strLists).

A.1.2 Pruned document tree based on ID lists

Note since strLists is retrieved by d.PathIndex, ids in strLists
can be used to re-create a pruned document tree of T(d). We
call lists of ids that can be used to create a valid XML doc-
ument tree the document-compatible id lists. Essentially in
such lists, if two Dewey IDs are identical, then their corre-
sponding path must have the same tag names at each step. If
UL is the universe of ordered document-compatible id lists,
weuse Comp(H (t, strLists)) € 2YL to denote the universe
of completions of id lists in H (¢, strLists).

For aset of id lasts L € UL, we use T(L) = (V, E, Tag,
Value, Cont) to denote the document tree that contains all
and only ids in L. More formally, if rootld(L) is the first
id component that all ids in L sares and root(T) is the root
node of tree T, then T first satisfies the following properties
concerning ids:

— id(root(T(L))) = rootIld(L) (The id of the root node is the
first component of the Dewey ID in the lists).

— Vm,n € T(L), parent(m,n) < (m.id, n.id € Prefix(L) A
parent(id(m), id(n))) (the parent child relations of nodes
in T is decided by the Dewey IDs are in the lists).

— Vpid € Prefix(L), In € T, id(n) € T.Cont A id(n) = pid
APm e T, m # nA id(m) = pid. (there is a unique nodes
corresponding to each component of the Dewey ID).

Intuitively, T and L has one-to-one mappings on ids. For
an ID did € Prefix(L), if Node(T, did) is the node in T s.t.
Node(T, did).id = did, then T further satisfies the following
properties:

— VI € L, Vid €1, Yag € anc(1.QNode), Vpid € Pre-
fix(1.QNode, id, aq), Tag(Node(T, pid)) = aq.name.

— Vpid € prefix(L), Value(pid) # null = Value
(Node(pid)) = Value(pid) AV pid € prefix(L), id (n)=pid
= Value(pid) = null = Value(Node(T, pid)) = null.

Hence T(H(t, strLists)) denotes the subtree of T(strLists)
that contains ids in H (¢, str Lists).

Further, we use CT(t) and GenPD1(t) to denote the can-
didate tree and the PDT the algorithm generates after the
loop # t. We also use CT (t — —) denote the candidate tree
CT(t — 1) with new IDs added in the beginning of the loop
# t by lines 11-15. and use CT (¢ —) to denote the candidate
tree after we process nodes in the CT (r—) (lines 2—17). We
define C(0—) = C(0 — —) = C(0).

For notational convenience, given a Dewey ID did, if
there exists a node n € CT(t).V (or GenPDT(t).V, or PDT),
n.id=did, then we say did € C1(t) (or GenPD1{(t), or PDT).
And given aid pid, a QPT Q, a set of keywords KW, L e UL,
we say the predicate Qualified(pid, Q, KW, L) = true < pid
€ PDT(Q, KW, {Q.root = T(L).root}).

A.2 Proofs

At a high level, the algorithm GeneratePDT consists of three
steps. First, it invokes PrepareList to construct lists of Dewey
ids, ordered by id, that correspond to nodes without manda-
tory children nodes in the QPT. Then, it initializes the can-
didate tree using the minimum ID from each id list. Next, it
enters a loop which keeps creating PDT nodes using qualified
(defined later) CT nodes and creating new CT nodes using
available IDs. The algorithm terminates after processing all
IDs, and removing all nodes in the CT.

The core part of the algorithm GeneratePDT is the while-
loop (lines 9-20 in Fig. 13) which keeps creating PDT nodes
using nodes in the candidate tree, and creating new nodes in
the candidate tree using the next available id in the id lists.
We first prove a theorem that characterizes the invariant of
this loop.

Lemma 1 Given a set of keywords KW, a QPT Q, an XML
database D, an environment 5 € U E(D, Q), if§(Q.root)=d
and (strLists, invLists) = PrepareList(Q, d.Pathindex,
d.Invindex, KW), then after the loop # t,
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(a) Vpid € Prefix(H(t, strLists)), Qualified(pid, O, KW, H(t,
strLists)) = true = (pid € GenPDT(t) v pid €
CT())van € CT(t).V, pid € n.PDTCache) (quali-
fied nodes are in the candidate tree or the result PDT),
and

(b) Vid € GenPDT(t), id € Prefix(H(t, strLists)) A Quali-
fied(pid, Q, KW, H(t, strLists)) = true. (all nodes in the
PDT are qualified)

Lemma 1 indicates that after the loop #t, if a Dewey ID is
a result PDT node based on the ids we have processed by t,
then the id must be kept in GenPDT(t), CT(t), or pdt caches
of CT(t). Further, if for any possible completion of the id lists
we have processed, this Dewey ID is not qualified, then it is
not in CT(t), GenPDT(t), or pdt caches of CT(t).

A.2.1 Supporting lemmas for Lemma 1

We now present a set of lemmas that will be used in the proof
of Lemma 1. Proofs of these supporting lemmas are available
at Appendix B.

First, by the definition of PDT, it is easy to show the fol-
lowing lemma:

Lemma 2 (Monotonicity) Given a set of keywords KW, a
QPT Q, an XML database D, an environment
6 e UE(D, Q), if §(Q.root) = d and (strLists, invLists) =
PrepareList(Q, d.Pathlndex, d.Invindex, KW), then for any
loop #t,

(a) Vpid € Prefix(H(t, strLists)), Qualified(pid, Q, KW,
H(t, strLists)) = true = VYL € Comp(H (¢, strLists)),
Qualified(pid, Q, KW, L) = true.

(b) Ven € CT(t), Veng € cn.CTQNodeSet, id(cn) € CE
(cng. T(H(t, strLists)).root) = ¥t > t, (cn € CT(1’) =
id(cn) € CE(cng, T(H(t’, strLists)).root).

(¢) Ven € CT(t), Yeng € cn.CTQNodeSet, id(cn) € PE
(cng. T(H(t, strLists)).root) = Vt' > t, cn € CT(t") =
€ PE(cng. T(H(t’, strLists)).root).

The key idea is that the membership of a PDT node is
determined by existence of its ancestor nodes and its man-
datory children nodes in the PDT. Hence given a QPT and
a set of IDs SI, if an ID is included in the PDT as per the
definition, then this id is also included in the PDT using any
superset of SI because all of its ancestor and children nodes
must also be in the superset.

Given a QPT ¢ and a node gn € g, we say MC(qn) =
{qgnc | (gn, qnc, axis, ‘m’) € q.E A axis =/ or *//’} is the
mandatory children nodes of grn in g. For each edge e in the
QPT, we represent e using a 4-tuple (parent, child, axis, ann)
where parent and child are the parent and child node of e,
respectively, axis is */’ or ‘//’, and ann is ‘0’ or ‘m’.
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Given a CT node cn, a QPT node qn € MC(CT. CTQN-
ode), the following Lemma 3 indicates that the value of
cn.DM [qed] corresponds to whether cn has a child/descen-
dant node that is also a candidate element. Since we add new
ids by calling AddNewCTNodes(), we use List; to denote
the lists of IDs that have been retrieved after calling t times of
AddNewCTNodes, and CT; denote the candidate tree after
calling t times of AddNewCTNodes.

Lemma 3 (DescendantMap) Given a set of keywords KW, a
QPT Q, an XML database D, an environment
6 € UE(D, Q), if §(Q.root) = d and (strLists, invLists)
= PrepareList(Q, d.Pathindex, d.Invindex, KW), then after
adding #t IDs,

VYen € CT;, Veng € cn.CTQNodeSet Ygqcd € MC
( cnq.QNode), cng.DM[qcd] = 1 <

(((cnq.QNode, gcd, /', ‘m’) € Q.E=3l € List;, 3lid € [, Acid
€ Prefix(L.ONode, lid, qcd), Ice € CE(qcd, T(List;).root),
ce.id = cid A id(cn) € Prefix(I.QNode, lid, cng.QNode) N
parent(id(cn), cid)) N

((cnq.QNode, qcd, //’, ‘m’) € Q.E = 3l € List;, Alid € [, Acid
€ Prefix(.ONode, lid, qcd), Ice € CE(qcd, T(List;).root),
ce.id = cid N id(cn) € Prefix(l.QNode, lid, cnq.QNode) N
anc(id(cn), cid)) )

Since at each loop (lines 9-20), we start by adding new
IDs corresponding to the current left most path, Then it is
easy to infer the following lemma from Lemma 3:

Lemma 4 (DM) Given a set of keywords KW, a QPT Q,
an XML database D, an environment § € UE(D, Q), if
8(Q.root) = d and (strLists, invLists) = PrepareList(Q,
d.Pathindex, d.Invindex, KW), then for every loop #t,

Yen € CT(t — —), Yeng € cn.CTQNodeSet Ngqcd € MC
(cng.QNode), cng.DM[gcd] = 1 &

(((cng.QNode, qcd, */’, ‘m’) € Q.E = 3l € H(t, strLists), 3lid
€ 1, Acid € Prefix(.QONode, lid, qcd), Ice € CE(qcd, T(H(t,
strLists)).root), ce.id = cid A id(cn) € Prefix(l.QNode, lid,
cng.QNode) A parent(id(cn), cid)) N

((cnq.QNode, gcd, //’, ‘m’) € Q.E = 3l € H(t, strLists), 3lid
€ [, Acid € Prefix(I.QONode, lid, qcd), Ice € CE(qcd, T(H(t,
strLists)).root), ce.id = cid A id(cn) € Prefix(I.ONode, lid,
cng.QNode) A anc(id(cn), cid)) )

Now, Lemma 5 indicates that if the flag InPdt of a CT
node is true, the id of this node is qualified.

Lemma 5 (InPdt) Given a set of keywords KW, a QPT Q,
an XML database D, an environment § € UE(D, Q), if
8(Q.root) = d and (strLists, invLists) = PrepareList
(Q, d.Pathindex, d.Invindex, KW), then at the loop #t,

(@) Vn e CT(t—), Vnqg € n.CTQNodeSet, nq.InPdt = true
= cn € PE( nq.QNode, T(H(t, strLists)).root).
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(b) Vn € CT(t—).LeftMostPath, Ynq € n.CTQNodeSet,
t > 0 A cn € PE(nq.QNode, T(H(t, strLists)).root)) =
ng.InPdt = true A (Nt' > t, n € CT(t’) = nq.InPdt =
true An € CT(t'—) = (nqg € n.CTQNodeSet A nq.In-
Pdt = true) An€ CT(f' — —) = (nq € n.CTQNodeSet
A ng.InPdt = true)).

The following Lemma 6 characterizes the properties of
pdt cache. Note that for ease of exposition, we additionally
associate each node in the pdt cache with a set of QPT node,
denoted as PDTQNodes, as CTQNodeSet in CT nodes. For-
mally, we change line 10 in Fig. 15 to the following:

pdtCacheNode.PDTQNodes.add(q.QNode, q.PL)

Then for a node n in the pdt cache, it is easy to see that
PL(n) = {x € q.PL| q € n.PDTQNodes}, and we use n.PL
and PL(n) interchangeably.

Lemma 6 (PDTCache) Given a set of keywords KW, a QPT
Q, an XML database D, an environment 6 € UE(D, Q),
if 5(Q.root) = d and (strLists, invLists) = PrepareList
(Q, d.Pathindex, d.Invindex, KW), then at the loop #t,

(@) Ven € CI(t), Yenp € cn.pdtCache, Yq € cnp.
PDTQNodes, Ace € CE(q, T(H(t, strLists)).root), ce.id
= cnp.id (nodes in the pdt caches satisfy the descendant
restrictions).

(b) Ven € CT(t), Yenp € cn.pdtCache, (PL(cnp) = 0 A
Yenpp € PL(cn), cnpp.InPdt = false) = Qualified
(cnp.id, H(t, strLists)) = false (if parents are not qual-
ified, then the node itself is not qualified).

(¢) Ven € CT(t), Yenp € cn.pdtCache, (PL(cnp) = @ Vv
denpp € PL(cnp), cnpp.InPdt = true) = Qualified
(cnpp.id, H(t, strLists)) = true (if the node does not
have parents or at least one parent is qualified, then the
node is qualified).

For notational convenience, given a Dewey ID did and a
candidate tree CT, if there exists a node n € CT and did €
n.pdtCache, then we say did € pdtCache(CT).

Lemma 7 (Completeness of CT) Given a set of keywords
KW, a QPT Q, an XML database D, an environment § €
UE(D, Q), if 6(Q.root) = d and (strLists, invLists) = Pre-
pareList(Q, d.Pathindex, d.Invindex, KW), then at the loop
#1t, Vpid € Prefix(H(t, strLists)), Qualified(pid, Q, KW, H(t,
strLists))=false AAL € Comp( H( t, strLists)), Qualified(pid,
0O, KW, L)=true = pid € CT(t) v pid € pdtCache(C1T(t)).

Lemma 7 indicates that if a Dewey ID could potentially
be a qualified ID, then it will be included in the candidate
tree.

Finally, when the algorithm initializes the candidate tree
(lines 6-7 in Fig. 13), it simply creates nodes in the candi-
date tree using the minimum ids from each list, and does not

remove nodes or create node in the pdt cache. Therefore if
MinimumlID(I) is the minimum Dewey ID in the list /, then
it is straightforward to infer the following lemma:

Lemma 8 (Initialization of CT) Given a set of keywords
KW, a QPT Q, an XML database D, an environment § €
UE(D, Q), if §(Q.root)=d and (strLists, invLists) = Pre-
pareList(Q, d.Pathindex, d.Invindex, KW), then after initial-
izing the candidate tree CT,

(a) Vid € CT, 3l € strLists, 3q € anc(L.ONode), Apid €
Prefix(1.ONode, MinimumlID(l), q), id = pid

(b) VI € strLists, Vg € anc(l.QNode)Npid € Prefix
(I.ONode, MinimumlID(1), q), pid € CT.

A.2.2 Proofs of Lemma 1

We separate Lemma 1 into two parts and prove each of them
separately.

Lemma 9 Given a set of keywords KW, a QPT Q, an XML
database D, an environment § € UE(D, Q), if§(Q.root) =
d and (strLists, invLists) = PrepareList(Q, d.Pathindex,
d.Invindex, KW), then after the loop #t, ¥ pid € Prefix(H(t,
strLists)), Qualified(pid, Q, KW, H(t, strLists))=true
= (pid € GenPDT(t) vV pid € CT(t)) van € CT(1).V,
pid € n.PDTCache (qualified nodes are in the candidate tree
or the PDT).

Lemma 10 Given a set of keywords KW, a QPT Q, an XML
database D, an environment § € UE(D, Q), if§(Q.root) =
d and (strLists, invLists) = PrepareList(Q, d.Pathindex,
d.Invindex, KW), then after the loop # t, Vid € GenPD1(t),
id € Prefix(H(t, strLists)) N Qualified(id, Q, KW, H
(t, strLists)) = true. (all nodes in the PDT are qualified).

We first prove Lemma 9.

Proof We prove Lemma 9 by induction on the loop # t.

Base case: t = 0. In this case, the algorithm just initial-
izes the candidate tree using the minimum ids from each list
in strLists, and it is easy to see that GenPDT(t) = null, and
Vn € CT(t), n.PDTCache = null. On the other hand, by
Lemma 8, we know that VI € strLists, Vg € anc(1.QNode),
Vpid € Prefix(1.QNode, MinimumlID(l), q), pid € CT . This
implies that Vpid € Prefix(H(O, strLists)), pid € CT(0) and
hence Lemma 9 is vacuously tree.

Induction Hypothesis: Suppose the lemma holds for loop
# n, and we need to show it also holds for loop # n+1.
Given a list 1, if Q(t, )={x € Prefix(1.QNode, id, q) | q €
anc(1.QNode) A id € 1 A Qualified(x, Q, KW, H(t, strLists))
= true} is the set of qualified ids in / at a given loop # t, and
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Q) = {x € Q(t, 1) | 1 € H(t, strLists)} is the set of all quali-
fied ids at the loop # t, we prove the lemma in three different
cases, one for each different case of id € Q(n+1). (a) id €
Q(n), i.e., id is already qualified at the loop # n; (b) id €
Prefix(H(n, strLists)) A id ¢ Q(n), i.e., id is in Prefix(H(n,
strLists)) and just becomes qualified at the loop # n+1; and
(¢) id € Prefix(H(n+1, strLists))- Prefix(H(n, strLists)), i.e.,
id is just introduced at the loop # n+1.

Casea:id € Q(n). Inthis case, id is already qualified at the
loop # n. Therefore by L.H., id € CT(n), id € GenPDT(n),
or 3cn € CT(n), id € cn. pdtCache. Now we discuss these
three cases separately.

Case a.1. First, if id € GenP DT (n), then by the algo-
rithm GenPDT(n) € GenPDT(n+1), we know that id € Gen-
PDT(n+1).

Case a.2. Second, if id € CT(n), there are further two dif-
ferent mini-cases.

Case a.2.1. First,ifid ¢ CT ((n + 1) — —).LeftMostPath,
then by the algorithm, we know that ¢d will not be processed
at the loop # n+1, and hence id € CT(n+1).

Case a.2.2. Second, if id € CT((n + 1) — —).
LeftMostPath, assume cn is the node in CT((n + 1) — —).
LeftMostPath s.t. id(cn)=id. Since Qualified( id, Q, KW, H
(n, strLists)) = true, by definition we know that 3cng €
cn.CTQNodeSet, Yene € MC(cnq), ((cnq.QNode, cnc, /7,
‘m’) € Q.E = Fce € CE(cnc, T(H(n, strLists)). root), par-
ent(id(cn), ce.id)) A ((cnq.QNode, cnc, ‘//’, ‘m’) € Q.E =
dce € CE(cne, T(H(n, strLists)). root), anc(id(cn), ce.id)) (*).
Hence at the loop n+1, by Lemma 3, we know that Vgcd €
MC(cnq), cng.DM [qed] = 1.

Further, also by Qualified(id, Q, KW, H(n,strLists))=true,
we know that 3cgn € cn.CTQNodes s.t. cqn satisfies the
property (*) as described above and (cnq.PL = @ v Jcnp €
CT((n+ 1) — —). LeftMostPath, 3p € cnp.CTQNodeSet, p
€ cnq.PL A cnp € PE(p, T(H(n, strLists)).root).

Then by Lemma 5, at the loop n+1, p.InPdt = true. Hence
by lines 2-5, id € GenPDT(n+1).

Case a.3. Third, if 3cn € CT(n).LeftMostPath, id €
cn.pdtCache. If cn € CT(n+1), then by the algorithm the
nodes in cn.pdtCache will not be removed, and hence the
lemma holds. Otherwise we can use the same argument as in
Case a.2.2 and show that cn.id € GenPDT(n+1).

Case (b): id € H(n, strLists) A id ¢ Q(n). First, since id €

Q(n+1), by Lemma 7, we know that id € CT(n) Vv dcn €
CT(n), id € cn.pdtCache. Then we can use the similar argu-
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ment to reason CT ((n + 1) — —), as in Case a.2 and a.3, and
show the lemma holds.

Case (c): id € Prefix(H(n+1, strLists))— H(n, strLists). In
this case, the algorithm will first add ¢d in CT(n) and then
process CT ((n+1) — —). LeftMostPath. Then if id ¢ CT(n).
LeftMostPath, the lemma is vacuously true; otherwise we can
prove the lemma using the same argument as in Case a.2 and
Case a.3.

Therefore the lemma holds for all ids in Q(n+1). ]

We now prove Lemma 10.

Proof We prove the lemma by induction on the loop #t.

Base case: t = 0.
= null.

It is vacuously true because GenPDT(t)

Induction Hypothesis : Assume the lemma holds for the
loop # t < n, we show that it also holds for loop # n+1.

First, Vid € GenPDT(n) N GenPDT(n+1), by L.H., we
know that Jid € Prefix(H(n, strLists)) A Qualified(id, Q,
KW, H(n, strLists)) = true.

Therefore by Lemma 2, we know Qualified(id, Q, KW,
H(n+1, strLists)) = true, and hence the lemma holds.

Now we prove the lemma for all g € (GenPDT(n+1) —
GenPDT(n)). By the algorithm there are three possible cases,
one for each different scenario where g is created in Gen-
PDT(n+1).

Case 1: g.id € CT((n+ 1) — —). Inthis case, since g is in
GenPDT(n+1), by line 5 we know that 3¢ € g.CTQNodes,
q.InPdt = true, and hence by Lemma 5, Qualified(g.id, Q,
KW, H(n+1, strLists)) = true.

Case 2: dcn € CT((n + 1) — —), g.id € cn. PDTCache.
Since g is created in GenPDT(n+1), by line 21 in Fig. 15, we
know that either (1) PL(g) = @ or (2) 3p € PL(g), p.inPDT
= true. Hence by Lemma 6, we know that Qualified(g.id, Q,
KW, H(n+1, strLists)) = true.

Case 3: g.id € Prefix(H(n+1, strLists)) - Prefix(H(n, strLists)).
In this case, g.id € CT ((n + 1) — —), and hence we can use
the similar argument to Case 1 to show the lemma holds. O

Appendix B: Proofs of supporting lemmas

Proof of Lemma 3

Proof First, if MC(cnq) = ¢, then the lemma is vacuously
true and hence we only consider the case where MC(cnq)

£ 0.
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We prove the inductions on # t.

Base case: t = 0. In this case, CT(0) is empty and thus the
lemma is vacuously true.

Induction Hypothesis: ~ Assume the lemma holds for t<n,
we show that it also holds for t = n+1.

Note by the algorithm, n+1 and n can be in the same or
different loops in lines 9-20. However, since we never mod-
ify the value of DM after adding IDs, we do not differentiate
these two cases.

Now we assume that after adding the ID at the time
n+l, given a cn € CT,y1, cng € cn.CTQNodeSet,
gcd € MC(enq), cnq.DM[qed] = 1. There are four different
cases to consider. (a) cn € CT,, A cnq € CT, A cnq[qcd] =
1 at the time n, and (b)cn € CT,, A cnq € CT, A cnq[qed] =
0 at the time n, and (c)cn € CT,, A cnq ¢ CT,,, and (d)cn ¢
CT,.

Case (a). Inthis case, by I.H., we know that ((cnq.QNode,
qgcd, /°, ‘m’) € Q.E = 3l € List,, 3lid € 1, 3cid € Pre-
fix(1.QNode, lid, qcd), Ice € CE(qcd, T(List,).root), ce.id
= cid A id(cn) € Prefix(1.QNode, lid, cnq.QNode) A par-
ent(id(cn), cid))A

((cnq.QNode, gcd, *//’, ‘m’) € Q.E = 3l € List,, 3lid € 1,
dcid € Prefix(1.QNode, lid, qcd), Ice € CE(qcd, T(Listy).
root), ce.id = cid A id(cn) € Prefix (1.QNode, lid, cnq.QNode)
A anc(id(cn), cid)).

Hence by the definition of candidate elements, it is easy to
infer that ((cnq.QNode, qcd, /°, ‘m’) € Q.E = 3l € List, 41,
dlid € 1, 3cid e Prefix(1.QNode, lid, qcd), 3ce € CE(qcd,
T(List,41).root), ce.id = cid A id(cn) € Prefix(1.QNode, lid,
cng.QNode) A parent(id(cn), cid)) A
((cnq.QNode, qcd, /’, ‘m’) € Q.E = 3l € List,4+1, 3lid
€ 1, Jcid € Prefix(1.QNode, lid, qcd), Jdce € CE(qed, T
(Listy41).root), ce.id = cid A id(cn) € Prefix(1.QNode, lid,
cng.QNode) A anc(id(cn), cid)).

Hence the lemma holds.

Case (b). In this case, we show the lemma by induction on
the depth of qcd.

Base case: qcd is the leaf node. 1In this case, since cng.
DM|qcd] is set to 1, if nide 1 the id we add at the time n+1,
then we can infer that 3gid € Prefix(1.QNode, nid, qcd).
Further, since qcd is the leaf node, by definition of candidate
elements and by the specification of path index, we know
that 3gid € CE(qcd, T(Lust,41).root). Further since we set
cng.DM[qcd] = 1, we know that cqn € qed.PL, therefore we
can finally conclude that (cnq.QNode, qcd, */’, ‘m’) € Q.E
= 3l € List,+1, Jlid € 1, 3cid € Prefix(1.QNode, lid, gcd),

dce € CE(qcd, T(List,4+1).root), ce.id = cid A id(cn) € Pre-
fix(1.QNode, lid, cnq.QNode) A parent(id(cn), cid)) A
((cnq.QNode, qcd, /’, ‘m’) € Q.E = 3l € List,4+1, 3lid
€ 1, Jcid € Prefix(1.QNode, lid, qcd), Jce € CE(qed, T
(Listy41).root), ce.id = cid A id(cn) € Prefix(1.QNode, lid,
cng.QNode) A anc(id(cn), cid)).

Induction Hypothesis: Assume the lemma holds for qcd of
depth > d, we need to show the lemma also holds for d-1.

If MC(qcd) = ¢, then we can use the similar argument as
the base case and show the lemma holds. Otherwise MC(qcd)
# 0.

There are two mini-cases here, depending on whether
there exists a child node of cn in CT,, which contains qcd
in its CTQNodeSet.

First, assume 3gn € CT,, Igc € cn.CTQNodeSet, qcd =
gc.QNode A Vmg € MC(qc), qc.DM[mq] = 1 at the time
n+1. In this case, since at the time n, cnq.DM [ged] = O,
intuitively we know that certain descendant restrictions of
gcd are not satisfied at the time n. If X = {x|xeMC(qcd)
wedge qc.DM[x] = 1 in CT,}, and Y = {y|xeMC(qcd) A
qc.DM[y] =0in CT; 41 }.

Then by I.H. on the number n, we know at the time n, the
lemma holds for all x in X. Further, by [.H. on the depth, we
know the lemma also holds for all y in Y.

Therefore we know that at the time n+1, Vmg € MC(qc),
(qed, mq, /’, ‘m’) € Q. E=-3l € List, 11, 3lid €1, 3cid € Pre-
fix(LQNode, lid, mq), Jce € CE(mq, T(List,+1)
.root), ce.id = cid A id(qn) € Prefix(1.QNode, lid, qcd) A
parent(id(qn), cid)) A
((cnq.QNode, qcd, //°, ‘m’) € Q.E = 3l € List, 41, 3lid €1,
dcid e Prefix(1.QNode, lid, mq), Ice € CE(mq, T(List;+1)
.root), ce.id = cid A id(cn) € Prefix(1.QNode, lid, qcd) A
anc(id(cn), cid)).

Therefore qn € CE(qcd, T(List,+1).root), and hence
(cnq.QNode, qcd, /7, ‘m’) € Q.E = 3l € List, 41, 3lid €1,
dcid € Prefix(1.QNode, lid, qcd), 3ce € CE(qed, T(List,+1)
.root), ce.id =cid A id(cn) € Prefix(1.QNode, lid, cnq.QNode)
A parent(id(cn), cid)) A
((cnq.QNode, gcd, //°, ‘m’) € Q.E = 3l € List, 41, 3lid €1,
dcid € Prefix(1.QNode, lid, qcd), Ice € CE(qcd, T(List,+1)
.root), ce.id = cid A id(cn) € Prefix(1.QNode, lid, cnq.QNode)
A anc(id(cn), cid)).

Second, if ﬂqn € CT,, 3gc € cn.CTQNodeSet, qcd =
gc.QNode. In this case, since we only add a single Dewey
ID, we can use the similar induction as in the first case from
bottom up and show the lemma holds.

Case (c) and (d) Inthis case, we just add the QPT node cqn

at the time n+1. Then we can also show the lemma using an

easy induction on the depth of qcd, similar to Case (b).
g

We prove the inductions on # t.
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Base case: t = 0. In this case, no IDs have been retrieved
and CT(0) is empty and hence the lemma is vacuously true.

Induction Hypothesis: ~ Assume the lemma holds for t<n,
we show that it also holds for t = n+1.

If B denote the RHS of the statement, then given a cn €
CTyt1, cng € cn.CTQNode, gcd € MC(cqn.QNode), there
are five cases to consider. (a) cn € CT,, Acnq € CT,, A qcd
€ CT, A B =true, and (b)cn € CT, Acnq € CT, A qed €
CT, N B =false, and (c)cn € CT, Acnq € CT,, A qcd ¢
CT, N B =false, and (d) cn € CT,, Acnq ¢ CT, A qcd ¢
CT, AN B =false,and (e) cn ¢ CT, A cnq ¢ CT, A qcd ¢
CT, N B = false.

We now show each of them separately.

Case (a). Inthis case, by I.LH., we know that cnq. DM[qcd]
= 1. By the algorithm, we never change the value from
1 to 0, and hence the lemma holds.

Case (b). In this case, we can infer that cid ¢ CE(qcd,
T(List,) .root. But since we assume that cid € CE(qcd,
T(Listy41).root, we know that MC(qcd) # @, and Imgq €
MC(qgced), (qed, mq, “/, ‘m’) € Q.E, = #l € List,, 3lid €
1, Imid € Prefix(1.QNode, lid, mq), mid € CE(mq, T(Lzst,)
.root), A cid € Prefix(1.QNode, lid, gcd) A parent(cid, mid))
A

((qed, mq, /7, ‘m’) € Q.E = 3l € List,, 3lid € 1, 3mid €
Prefix(1.QNode, lid, mq), mid € CE(mq, T(Lst,).root) A cid
€ Prefix(1.QNode, lid, qcd) A anc(cid, mid)) (¥).

We assume qn is a node in CT,, + 1 and C7,, s.t. qn.id
= cid. we say X = {x|x € MC(qcd), property (*) does not
hold}, and Y = {y|y € MC(qcd), property (*) holds}.

First, for all x in X, by I.H., we know that the lemma holds.
Hence Vx € X, if qnc € qn.CTQNode and qnc.QNode =
gcd, then gqnc.DM[x] = 1. For all y in Y, we can show that
qnc.DM[y] = 1 in CT, 4 by induction on the depth of y. If y
is the leaf node and cy is the CT node corresponding to y, then
by the algorithm we will set qnc.DM[y] to be 1. Inductively,
if y is the non-leaf node. Then if MC(y) = ¥, by the algo-
rithm, we will also set qnc.DM[y] = 1. Otherwise by I.H. on
the depth, we know for all yy € MC(y), the corresponding
entries in DM are set to 1, and hence qnc.DM[y] is set to 1.
Hence by the algorithm, cnq.DM[qcd] is set to 1.

Hence the lemma holds in this case.

Case (c), (d), and (e). In all of these cases, we can prove
induction on the depth of qcd in a similar fashion to Case
(b). As the base case, if qcd is the leaf node, if did € [ is the
single Dewey ID that we add to CT,,+1, we know that cid €
Prefix(1.QNode, did, qcd), and hence by the algorithm, we
will set cnq.DM[qcd] to be 1. Inductively, if qcd is a non-leaf
node, then if MC(qcd) = ¥, we can show the lemma simi-
lar to the base case. Otherwise by I.LH. on the depth, if cnn
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is the CT node s.t. 3gn € cnn.CTQNodeSet, qn.QNode =
gcd, then Vx € MC(qcd), qn.DM[x] = 1. And hence by the
algorithm, we will set cnq.DM][qcd] to be 1. O

Proof of Lemma 5

Proof We first prove (a) by induction on the loop # t.

Base case: t = 0. The lemma is vacuously true since in
CT (0—), we do not change the values of InPdt from false to
true.

Induction hypothesis: ~ Assume the lemma holds for loop #
< t, we show it also holds for loop # t+1.

First, if cn € CT(t—) and cng € cn.CTQNodeSet and
cng.InPdt = true, then by I.H., we know that the lemma holds.
Otherwise the value of inPdt is set to true at the loop # t+1.

We show the lemma holds in this case by inductions on
the depth of nodes, starting from the root.

Base case: depth = 0. In this case, the node cn is the
root node and hence we know that Ycng € cn.CTQNode-
Set, cnq.QNode is also the root node (in fact, by definition
there is only a single node in cn.CTQNodeSet in this case).
Hence cnq.PL = , and by line 4 in Fig. 15, cnq.inPdt is set
to true when Vi € cnq.DM[i] = 1. By Lemma 3, this implies
that cn € CE(cnq.QNode, T(H(t, strLists)).root). Therefore
by definition of PE, we know that cn € PE(cnq.QNode, T(H(t,
strLists)).root), and hence the lemma holds.

Induction hypothesis: ~ Assume the lemma holds for nodes
of depth < n, we now show the lemma also holds for nodes
of depth n+1.

Given cng € cn.CTQNodes, if cng.inPdt = true, then by
lines 4-5 in Fig. 15, we know that Vi € cnq.DM[i] = 1. By
Lemma 3, this implies that cn € CE(cnq.QNode, T(H(t+1, str-
Lists)).root). We also know that cnq.PL = @ or 3p € cnq.PL,
If cnq.PL = #, then cnq is the root node in the QPT and by
definition, cn € PE(cnq.QNode, T(H(t+1, strLists)).root). If
dp € cnq.PL, q.inPdt = true, and if cnp is the CT node s.t.
p € cnp. CTQNodeSet, then by the algorithm, we know that
cnp is an ancestor node of p. Then if cnp.InPdt = true before
the loop # t+1, we can apply I.H. on the loop # t and using
Lemma 2 to infer that cnp € PE(p, T(H(t+1, strLists)).root);
otherwise we can use [.H. on the depth of nodes and infer that
cnp € PE(p, T(H(t+1, strLists)).root). Hence by definition of
PDT, we know that cnp € PE(p, T(H(t+1, strLists)).root).
Hence (a) holds.

(b) Weonly show thatVn € CT (r—).LeftMostPath, Vng €
n.CTQNodeSet, cn € PE(nq.QNode, T(H(t+1, strLists))
.root)) = nq.InPdt = true.
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It is straightforward to infer that Vn € CT(t—).
LeftMostPath, Yng € n.CTQNodeSet, cn € PE(nq.QNode,
T(H(t, strLists)).root)) = nq.InPdt = true A (Vf > 1, n
€ CT(t") = nq.InPdt = true An € CT(t'—) = (nq € n.
CTQNodeSet A nq.InPdt =true) An€ CT (' ——) = (nq €
n.CTQNodeSet A nq.InPdt = true)) because we never change
the flag from true to false.

We now prove (b) by induction on the loop # t.

Base case: t = 1. 'We prove the lemma holds in this case
by induction on the depth of the nodes in CT (1—).

Base case: depth = 0. In this case, the node cn is the
root node and hence we know that Vcng € cn.CTQNodeSet,
cng.QNode is also the root node. In fact, by definition there
is only a single node in cn.CTQNodeSet, call it sq. Since cn
€ PE(sq.QNode, T(H(t, strLists)).root), we can infer that cn
€ CE(sq.QNode, T(H(t, strLists)).root). Hence by Lemma 3,
Vi € ecnq.DM[i] = 1. Further, since sq is the root node in the
QPT, sq.PL = @. Then by line 4 in Fig. 15, cnq.inPdt is set
to true. Hence (b) holds.

Induction hypothesis:  Assume the lemma holds for nodes
of depth < n, we now show the lemma also holds for nodes
of depth n+1.

Given cng € cn.CTQNodes, if cnq is the root node in
the PDT, then we can use the similar argument to the base
case and show (b) holds. If cnq is non-root node and assume
p is the parent node of cnq. Assume cnp is an ancestor
node of cn and p € cnp.CTQNodes, then cn € PE(cnq,
T(H(t+1, strLists)).root) implies that cnp € PE(p, T(H(t+1,
strLists)).root). By I.H., we know that cnp.InPdt = true. Fur-
ther cn € PE(cnq, T(H(t+1, strLists)).root) also implies that
cn € CE(cng, T(H(t+1, strLists)).root, hence by Lemma 3,
Vi € cnq.DM[i] = 1. Therefore by lines 4-5 in Fig. 15,
cnq.InPdt will be set to true.

Hence (b) holds in the base case.

Induction hypothesis: ~ Assume the lemma holds for loop #
< t, we now show the lemma also holds for loop # t+1.

Given cn € CT((t + 1)—).LeftMostPath, cng € cn.
CTQNodes, if cn € CT(t—) .LeftMostPath and id(cn)e
PE(cng, T(H(t, strLists)) .strLists)), the by L.H., we know
that cnq.InPdt = true at the loop # t. Since we never change
it from true to false, the lemma holds.

Otherwise cnq.InPdt is set to true at the loop # t+1. We
can use the similar induction on the depth of the nodes as in
the base case to show the lemma holds.

Proof of Lemma 6

Proof (a) It is easy to prove (a) by lines 11 in Fig. 15 using
Lemma 3.

(b) We prove (b) by considering different cases corre-
sponding to when the node is created in the pdt cache and
when the parent list is updated. At the loop # t, given cn €
CT(t+1), x € cn.PdtCache, if x is just created in
cnp.PdtCache, then by definition of PL, we know thatif Vg €
x.PDTQNodes, Vp € q.PL, Qualified(id(p), H(t, strLists)) =
false implies Qualified(id, H(t, strLists)) = false.

Otherwise x is created at loop x < t and is updated. We
can show the lemma by inductions on the number of update
times. The base case is just shown. Inductively, we assume
the (b) holds for the case where PL(x) is updated n times.
Now PL(x) is updated again by line 28 in Fig. 15. Assume
q is replaced by q.PL, by definition we know that Vgp €
q-PL, Qualified(id(qp), H(t, strLists)) = false implies Qual-
ified(id(q), H(t, strLists)) = false. Further, we know that by
LH., Qualified(id(q), H(t, strLists)) = false implies that Qual-
ified(x.id, H(t, strLists)) = false. Since we assume Vgp €
q.PL, Qualified(id(gp), H(t, strLists)) = false, we can con-
clude that Qualified(x.id, H(t, strLists)) = false.

(c) can also be shown in a similar fashion as in (b).

Proof of Lemma 7

Proof We can prove this lemma by induction on t.

Base case: t = 0. In this case, all ids in H(t, strLists) are in
CT(t) and therefore the lemma is vacuously true.

Induction Hypothesis: ~ Assume the lemma holds for ¢ <n,
we need to show the lemma holds for n+1.

We show an equivalent statement as follows. pid ¢
CT(n+1) A pid ¢ pdtCache(CT(n+1)) A Qualified(pid, Q,
KW, H(n+1, strLists)) = false = AL € Comp(H(n+1,
strLists)), Qualified(pid, Q, KW, L) = true.

There are two cases to consider depending on whether pid
is in Prefix(H(n, strLists)).

Case 1: pid € Prefix(H(n, strLists)).  First, by Lemma 2,
Qualified(pid, Q, KW, H(n+1, strLists)) = false implies Qual-
ified(pid, Q, KW, H(n, strLists)) = false. Then we have two
different cases to consider.

Case 1.1: pid ¢ CT(n) A pid ¢ pdtCache(CT(n)). In this
case, we can use LH. and infer that AL € Comp(H(n,
strLists)), Qualified(pid, Q, KW, L) = true. This leads to the
conclusion AL € Comp(H(n+1, strLists)), Qualified(pid, Q,
KW, L) = true because Comp(H(n+1, strLists)) € Comp(H
(n+1, strLists)).

Case 1.2: pid € CT(n) Vv pid € pdtCache(CT(n)). In this

case, since pid ¢ CT(n+1) A pid ¢ pdtCache(CT(n+1)), we
need to discuss when pid is removed at loop # n+1.
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First assume pid € CT(n) and assume at loop # t, pid is
never temporarily copied to any pdt cache. Intuitively, this
case indicates that pid does not satisfy the descendant restric-
tions.

By the algorithm there exists a node pn in the left most
path of CT(n+) and pn.id = pid. By the algorithm pn must
be removed by line 34 in Fig. 15. By pid ¢ CT(n+1), we
can infer that Vg € pn.CTQNodes, 3ch € MC(q.CTQNode),
g.DM([ch] = 0. Further, we remove pn only when pn.Has-
Child = false. Also, by line 15 in Fig. 15, we have already
added next minimum ids corresponding to the left most path.
Also, for all paths in the lists, the next minimum IDs are
greater than their respective IDs in the current CT because
they are ordered ID lists. This implies that VL € Comp
(H(n+1, strLists)), if 1 € L and 1.QNode = ch, and if lid
is the next id in 1, then we know that Prefix(1.QNode, lid,
pn.QNode) is greater than pn.id, and hence q. DM[ch] will
never be set to be 1. Therefore by Lemma 3, we know that
VL € Comp(H(n+1, strLists)), pid ¢ CE(pn.CTQNode,
T(L).root)), and hence Qualified(pid, Q, KW, L) = false.

Second, if pid € pdtCache(CT(n)) or pid is in CT(n) but
was later copied to pdt cache of some nodes when we are at
loop # n+1. Assume pn is the node in the pdt cache s.t. pn.id
= pid, and assume pn € cn.pdtCache. For simplification, we
only consider the case where pn is removed when we process
pn. Intuitively, this case indicates that pid does not satisfy the
ancestor restrictions.

This is handled by line 26 in Fig. 15. Therefore we know
that before we remove pn, pn.PL ={cn} and 3ch € MC(cn),
cn.DM|[ch] = 0. By Lemma 3 and using the same argument
as in the first case, we know that VL € Comp(H(n+1, str-
Lists)), Qualified(cn.id, Q, KW, L) = false. Hence VL €
Comp(H(n+1, strLists)), pn does not satisfy the ancestor
restrictions, and therefore VL € Comp(H(n+1, strLists)),
Qualified(pid, Q, KW, L) = false.

Case 2: pid € Prefix(H(n+ 1,strLists)) - Prefix(H(n, strLists)).

Note that in the algorithm, we first add ids in H(n+1, str-
Lists) - H(n, strLists) (line 15 in Fig. 15) and then process the
left most path, therefore if CT(n’) is the intermediate candi-
date tree after we add new ids to CT(n), then pid € CT(n’)
and we can use the same argument in Case 1.2 to show that
the lemma holds. The full proof is skipped here.

Appendix C: Proofs of correctness of PrepareList

By Lemma 1, we know that once we exit the loop and the
candidate tree becomes empty, all qualified ids w.r.t to str-
Lists are captured in PDT and PDT only contains qualified
ids w.r.t to strLists. In other words, if GenPDT is the PDT
that is produced upon termination of the loop, then GenPDT
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= PDT(Q, KW, {Q.root = T(strLists).root}). We just need
the following final lemma to show Theorem 2 is true.

We first show two supporting lemmas.

Given a QPT Q, a node neQ, we say RootToLeaf(n, Q) is
the path starting from the root node of Q and ends on n, then
we can show the following lemma:

Lemma 11 (PathIndex) Given a set of keywords KW, a QPT
Q, an XML database D, an environment § € UE(D, Q), if
8(Q.root) =d, thenVq € QPT, Yn € D, n € PE(q, {Q.root
= d}) = id(n) € d.Pathindex.LookUp( RootToLeaf(q, Q)).

Proof We prove the lemma by inductions on the depth of q.

Base case: depth = 0. In this case, q is the root node of Q
and RootToLeaf(q, Q) = {q}. Hence d.PathIndex.LookUp(
RootToLeaf(q, Q)) = {id(n)| tag(n) = q.tag A Vp € q. Predi-
cates, satisfies(n, q) }. Therefore d. PathIndex.LookUp( Root-
ToLeaf

(g, Q)) is a superset of PE(q, {Q.root = d}. Hence the lemma
holds.

Induction hypothesis: Assume the lemma holds for q of
depth < d, we need to show the lemma for q of depth d + 1.

Assume pq is the parent of q. We now show the case where
(pq, g, /’, ann) € Q, and the case where (pq, q, //°, ann) €
Q can be shown similarly.

By definition, Vn € PE(q, {Q.root = d}), Inp € PE(q,
{Q.root = d}), parent(np, n). By .H., we can infer that Vn €
PE(q, {Q.root=>d}),3pid € d.PathIndex.LookUp(RootTo-
Leaf(np, Q)), parent(pid, id(n)). Therefore we can infer that
Vn € PE(q, {Q.root = d}), id(n) € d.PathIndex. LookUp
(RootToLeaf(q, Q)).

Hence the lemma holds.

Lemma 12 (CandidateElements) Given a set of keywords
KW, a QPT Q, an XML database D, an environment § €
UE(D, Q), if 6(Q.root) = d and (strLists, invLists) = Pre-
pareList(Q, d.Pathlndex, d.Invindex, KW),Vq € Q,Vn €D, n
€ PE(q, {Q.root = d}) = n € CE(q, {Q.root =
T(strLists).root}).

Proof We prove the lemma by induction on the depth of q.

Base case: q is the leaf node. In this case, Vn €PE(q,
{Q.root = d}). Since q does not have children nodes, we
will issue d.PathIndexLookUp( RootToLeaf(q, Q)). There-
fore by Lemma 11, we can infer that id(n) € strLists. Hence
by the definition, n € CE(q, {Q.root = T(strLists).root}).

Induction hypothesis: Assume the lemma holds for q of

depth > d, we need to show the lemma for q of depth d—1.
If MC(q) = @, then by the algorithm we will issue

d.PathIndex. LookUp( RootToLeaf(q)). Hence similar to the
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base case we can show the lemma holds. Otherwise by defi-
nition of PDT and Vn € PE(q, {Q.root = d}), YVcqg € MC(q),
(q,¢cq, /’, m) € Q= Inc € PE(cq, {Q.root = d}), parent(n,
nc) A (q, cq, //’, m) € Q = Inc € PE(cq, {Q.root = d}),
anc(n, nc).

Hence by .H., we know that Vn € PE(q, {Q.root = d}),
VYcqg € MC(q), (q, cq, /’, m) € Q = 3Inc € CE(cq, {Q.root
= T(strLists).root}), parent(n, nc) A (q, cq, //’, m) € Q =
dnc € CE(cq, {Q.root = T(strLists).root}), anc(n, nc).

Further, by the definition of Dewey ID, we know that Vn €
PE(q, {Q.root = d}), id(n) € T(d), Vcq € MC(q), (q,cq, /°,
m) € Q = Jnc € CE(cq, {Q.root = T(strLists).root}), par-
ent(n, nc) A (g, cq, //’, m) € Q = Inc € CE(cq, {Q.root =
T(strLists).root}), anc(n, nc).

Therefore n € CE(q, {Q.root = T(strLists).root}).

Hence the lemma holds.

Lemma 13 (PrepareList) Given a set of keywords KW,
a QPT Q, an XML database D, an environment
6 € UE(D, Q), if 5(Q.root)=d and (strLists, invLists) =
PrepareList(Q, d.Pathindex, d.Invindex, KW), Vq € Q, Vn €
D, n € PE(q, {Q.root = d}) < n € PE(q, {Q.root = T{(str-
Lists).root}).

PrO()f K‘:’?
We prove this direction by induction on the depth of q.

Base case: depth = 0. 1In this case, q is the root node of the
QPT. By definition, PE(q, {Q.root = d}) = CE(q, {Q.root =
d}), and PE(q, {Q.root = T(strLists).root}) = CE(q, { Q.root
= T(strLists).root}). By Lemma 12, we know PE(q, { Q.root
= d}) € CE(q, {Q.root = T(strLists).root}), and hence
PE(q, {Q.root = d}) € PE(q, {Q.root = T(strLists).root}).
Therefore the lemma holds in the base case.

Induction Hypothesis: Assume the lemma holds for q of
depth < d, now we show the lemma also holds for q of depth
d+1.

Assume p is the parent node of q in Q. We show the case
where (p, q, /°, ann) € Q, the case where (p, q, ‘//’, ann) €
Q can be shown similarly.

First, by Lemma 12, Vn € PE(q, {Q.root = d}), n €
CE(q, {Q.root = T(strLists).root}). Then by definition, we
know that Vn € PE(q, {Q.root = d}), 3np € PE(p, PE(q,
{Q.root = d}), parent(np, n). Hence by I.H. on nq, we know
that Vn € PE(q, {Q.root = d}), 3np € PE(p, {Q.root =
T(strLists).root}) parent(np, n). Hence Vn € PE(q, {Q.root
= d}), n € CE(q, {Q.root = T(strLists).root}). A Inp €
PE(p, {Q.root = T(strLists).root}) parent(np, n).

Therefore n € PE(q, {Q.root = T(strLists).root}).

Hence the lemma holds.

e
This direction follows from Lemma 2 because Vid € strLists,
1d € D. Hence the full proof is skipped.
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