L essons from Experience: Managing Software Test Teams
Ted Rivera; Scott Will

Software Quality Professional; Dec 2007; 10, 1; ProQuest Central

pg. 7

—

SOFTWARE VERIFICATION

AND VALIDATION

This article is a cutmination of observations
and recommendations for software engi-

neering and software testing professionals.
Some of the material won't surprise the e S S O n S rO m
casual reader at all; other material might be
considered somewhat provocative. it is based

[]
on years of experience by two managers at a
IBM and is offered with the hope that it X p e r I e n Ce -
will provide a catalyst for readers to think
through their approaches to software devel-

a
opment, particularly software testing. M a n a I n
Key words: culture, customer involvement,

integrity, metrics, quality, test execution,

test planning, test process, test schedules, e

SQP References

Efficient Test Planning and Tracking I e S t I e a m S
vol. 5, issue 2

Wayne D. Woodruff and Ron Pisechko

Choosing a Tool to Automate Software TED RIVERA AND SCOTT WILL

Testing
vol. 2, issue 1 IBM Software Group

Mark Fewster and Dorothy Graham

INTRODUCTION

In the authors’ combined experience through 40-plus years
with IBM, they have been lead programmers, headed worldwide
customer support organizations, been responsible for technical
quality engineering for entire divisions, and managed both
individual test teams and entire test organizations. They have
watched as software testing has moved from being mainly an
afterthought in the industry to becoming an integral part of
most software development teams. What follows is an eclectic
mix of their thoughts, ideas, and even some “battle scars” that
they have accumulated over the years — with the hopes that the
reader will be encouraged to “soldier on,” laying the groundwork
for the next generation.

As a business paradigm, Sun Tzu’s The Art of War (Sun Tzu
1993) is unnecessarily contentious. In software testing, however,
the analogy is a fit one. The very nature of the enterprise is simple:
Find problems in the work of others sometimes and publicize the
ugly features of their babies. No matter how closely testers work
with their development counterparts, although there may be some
positive (and some negative) approaches to communicating to
a developer that “Your baby looks like a chimpanzee,” and even
when using words sprinkled with lilac water, testers are certain
to offend. Even the more inclusive, more positive attitude: “Our
baby looks like a chimpanzee” is rarely met with enthusiasm.

Managing software teams is a challenging occupation and not
for the feint of heart. If Willie Nelson had possessed the forethought

www.asq.org 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lessons from Experience: Managing Software Test Teams

to enter the field of software engineering, he would
have certainly composed the timeless musical classic,
“Mama, don't let your babies grow up to be test manag-
ers.” Accepting a position as the manager of a software
test team smacks of lunacy and warrants psychological
evaluation. Consider the playing field:

¢ When using traditional development methodolo-
gies a team will almost never get code when it is
promised or needed in order to do appropriate
testing on a humane timetable. And while agile
methodologies have helped tremendously to
improve stability for teams that have adopted
them in a disciplined manner, where “agile” is
used as a mask for chaos, sadness ensues.

e Intense schedule pressures will permanently
dominate the landscape.

o Attracting and keeping talented engineers will
be a perpetual challenge.

¢ One serious mistake can crush a team and ruin a
hard-won reputation. “How could you have missed
that?” and “Wasn't this ever tested?” will be the
test team’s equivalent of The Scarlet Letter.

¢ Scrutiny from others, including executives, will
be frequent, and true support may be rare.

¢ Many will offer advice about how one could do a
better job by working “smarter and not harder.”

¢ The most successful test organizations will often
be unrecognized and virtually invisible. The
testers will be blended into the development
team in a cooperative “whole team” approach.
Others may minimize or fail to adequately
understand one’s contributions or those of the
testers: “The developers write great code” will
be the frequent conclusion.

Does this seem like a wise career choice? Or
is it instead a guaranteed future of antacids and
nitroglycerin tablets?

Despite this landscape, against all odds, the authors
have loved managing innovative test teams. The chal-
lenges are real, but the results can be exhilarating. In
the course of working with numerous test teams, the
authors have formed many strong—some would say
fanatic—opinions about a wide range of issues touch-
ing on test in software engineering organizations. And
while only opinions are presented in this article, in
virtually every instance, they are opinions borne out

8 SQP VOL 10, NO. 1/¢ 2007, ASQ

of the real experiences of the day-to-day management
of test teams. As a result, since these are stated only as
opinions, readers are free to dismiss them as the ravings
of lunatics—but bear in mind that these are opinions
that have been forged by real-world challenges.

PROCESS IN TEST TEAMS

More of the opinions the authors have formed about
managing test organizations are in the area of process
than in any other category. This is surprising. Given
the industry literature, one would naturally assume
that tools, skills, or something technological would
dominate this list. But in fact, everything falls apart in
a software development project if madness reigns, and
this is especially true for software testing teams.

It is no secret that the word “process” is loathed in
many software engineering organizations, and from
the authors’ perspective, this is because too often
bureaucracy masquerades as process. As such, the
authors begin their list of opinions with thoughts about
process because process issues are the most important
to deliberately address as a test manager. It should be
noted that prominently featuring test process in this
way is, in its own right, a strong opinion.

As aresult, the authors have formed specific opinions
about test process:

1) Morale improves with appropriate process.
This opinion is counterintuitive, but it is true
as long as rewards and recognition, as well as
consistency across teams, are ensured. Steve
McConnell, in his book Professional Software
Development (McConnell 2004), makes this
point at length, but the authors’ affirmation
of this point is based on their independent
implementation of light process across many
different teams and organizations. This is espe-
cially important within test teams, given the
high scrutiny often faced just prior to product
shipment. Without a consistent approach, morale
can easily deteriorate as finger pointing and
uncertainty dominate the landscape. Note
that even chaos is actually a process, just not a
very effective one. It must be explicitly stated,
however, that process bureaucracy is not the aim.
Appropriate process is the objective: the con-
sistent, disciplined application of best practices
and standards, coverage targets, performance
targets, and so on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lessons from Experience: Managing Software Test Teams

2) Test automation is not optional; however, it
should be assessed for appropriate return on
investment. This may be illustrated best through
the use of an example:

¢ A test engineer has a manual test case she
expects will need to be run once or maybe
twice. In this instance, she has carefully
documented the test case in a meaningful
fashion, with sufficient detail for someone else
to perform the test in the future, if needed.

¢ A defect is discovered during the execution
of the test case.

* To verify that this is really a defect, the test is
conducted again to ensure that it is genuine.

¢ If the developer and tester are not working side
by side, once the defect is determined to be
genuine, at times the developer will be skeptical,
or will at least want to see the defect firsthand,
and so the test case is run yet again.

¢ The defect is then repaired.

» Now the test case will need to be run once
again to ensure that it is successful.

¢ When the next build of the code is run (prefer-
ably after the defect is fixed), or regression
testing is needed at some other point, the test
will likely need to be run again. Potentially, it
may need to be run several times depending
on the need for regression testing or system
testing that might be appropriate.

With this scenario in mind, it becomes easy to justify
automating this test case. Or does it?

For test automation planning, it might be helpful—as
an example—to estimate automation time as a function
of execution time, making the decision as to whether to
automate easier. If it takes X units of time to execute a
test case and 50X units of time to automate the same
test case, then the test case should be expected to run
at least 50 times in order to break even. Thus, in the
previous scenario, automating the test case would not
be warranted (with the caveat being the number of times
the test case is executed during regression testing—but
recall that original expectation was low).

3) Never ship with any known high-severity defects.
Technical debt is a cruel mistress. If a company
knows about defects now, their customers will cer-
tainly know about them soon enough. Exceptions

to this rule should be extraordinarily rare and
should require agreement from customer support
and approval by executives. Never let exceptions
become the rule.

4) At least half of all low-severity defects identi-
fied before the beginning of product/system
test should be fixed prior to product/system
test exit. The low-severity defects that should
be fixed are those that customers will likely
see initially or often. Refer to the “Red Zone
Analysis” paper, which describes this approach
in detail (Rivera, Tate, and Will 2004a). When
using more agile methods (XP, Scrum, RUP, and
so on), the same concept applies: A substantial
number of less-severe defects can appear just
as serious to end users as a few high-severity
defects. Severity is a judgment made by the
tester (at times through discussions with others)
of the seriousness of the problem as related to
the product function. It represents the impact
this problem is having on the current test cycle.
Sample severity criteria and their respective
meanings can be seen in Table 1.

5) The test organization should have the ultimate
“stop-ship” decision. Without agreement from
the test team, whatever one is building should
not be considered as finished. If the decision
is made to release a product without test’s
agreement, it is akin to shipping cookie dough
instead of cookies.

TABLE 1 Sample severity criteria and

their meanings

Severity Codes | Meaning

An unavoidable error that makes a
component or the product inoperative,
including any error that requires a
restart of the product or operating
system.

Severity 1

Any abend or problem that severely
disables a major function of a
component or the component itself. A
workaround may be available.

Severity 2

Any minor functional problem
or technical inaccuracy in the
documentation.

Severity 3

Misspellings, color problems, incorrectly
formatted screens, bad grammar, and
other nonfunctional problems.

Severity 4

www.asq.org 9

© 2007, ASQ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lessons from Experience: Managing Software Test Teams

6) Ongoing performance testing is vital. True per-
formance testing often reveals the most expensive
defects that are otherwise detected only by cus-
tomers. Additionally, performance testers should
have an opportunity to review and influence
design decisions, pointing out likely performance
bottlenecks and capacity limitations.

7) Continuous, or at least daily, builds should be
required. An inability to perform regular, suc-
cessful builds indicates an overall quality risk
and should therefore be of concern to test teams.
And notably, a lack of continuous integration
impedes an organization’s efforts to move to
more agile methods of development.

8) Finding defects is only part of the test equa-
tion; fitness for use, while an old notion,
remains a potent consideration for test. W.
Edwards Deming is a ghost worth dealing with
(Gabor 1990).

9) Chronic overtime may occur, but must be
balanced with time for recuperation. Too often,
test teams are abused. “Death marches” must
not be the norm (Yourdon 1999).

10) Iterative development has positive effects on
identifying serious problems earlier and makes
overall testing more effective. Speaking from
the vantage point of test, the authors are strong
advocates for all disciplined approaches to
agile, with iterations that are truly stable. Apart
from purely technical benefits, communication
invariably improves as well.

ISSUES THAT AFFECT PEOPLE
ON TEST TEAMS

The second most significant area associated with consis-
tently producing high-quality software relates to cultural
elements. Once again, this is both surprising—and true.

It is therefore comparatively easy to take a step back
and quickly assess a test organization: How reason-
able and how consistent is its process? What kind of
organizational and people dynamics are present? How
successful is the organization at finding and attracting
strong technical talent? Considering these and other fac-
tors will provide a significant indicator of how effectively
that group will test the software.

10 SQP VOL. 10, NO. 1/® 2007, ASQ

More particularly, then, the authors have formed
various opinions about people issues:

11)

12)

13)

14)

15)

16)

17)

Test teams should be equally senior to develop-
ment teams. How senior the testers are in
comparison to the developers is a good indicator
as to whether an organizational commitment
is in place that supports the notion that test
really is a career. This comparison is not just a
comparison of teams based on their job titles,
but a comparison of overall experience.

The test organization should be neither a
development farm team nor a dumping ground.
To reverse the trend, perhaps the development
team should serve as a test farm team.

Some of an organization’s very best software
engineers should work in test, especially since
a significant portion of software development
expenditures are related to test. Consider:

¢ (Can bad engineers hire good ones?

¢ What is the incentive for a mediocre engineer
in test or development to recommend hiring
someone better, especially in an atmosphere
where performance appraisals encourage
individual efforts instead of team efforts?

Test teams should be active in writing papers,
submitting patent disclosures, attending indus-
try conferences (and even presenting when
selected), and innovation in general. Areas
ripe for input are test techniques, product
vulnerabilities, and test tools,

If budgets need to be cut, test is too often a more
common target than development. If cuts are
needed, they must be balanced across functions.

The career development model espoused by
McConnell is good. A valuable contribution
to the test community would be a detailed
model built up around testing, analogous to the
paradigm McConnell provides for developers
(McConnell 2004).

Dedicated development teams should necessar-
ily require dedicated test teams, that is, it is
wrong to move testers from product to product.
Otherwise, what are developers working on that
requires no resources for test design, review,
construction, or execution? In the unlikely
situation that a case can be made for a developer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lessons from Experience: Managing Software Test Teams

in a certain component to work in isolation, the
tester of that component cannot. So where is
the justification for shared testers and dedicated
developers? Worse still, compelling testers to
support more applications or products than their
development counterparts virtually precludes an
organizational move to agile—where constant
communication and partnership is essential—
along with its many advantages.

18) When interviewing testers, the authors always
include the following questions:

¢ What was the last software engineering book
you read?

¢ What languages can you program in?

* Are you interested in a career in testing or
just a job?

¢ What customers have you worked with?

19) Most testers should be capable programmers.
Programming skills are required for writing
automated tests and, of course, for understand-
ing the code.

BUSINESS ISSUES AND THEIR
EFFECT ON TEST TEAMS

If it is too often true that test organizations are far
removed from direct customer interaction, and most
test organizations are disconnected from the business
climate and business issues within which their products
are used. The real danger in this is that it becomes
impossible to express accurately the risks that will be
taken when key defects remain in the software and a
desire to ship the code is expressed.

As aresult, the authors have formed various opinions
about test organizations and business issues:

20) Software testers are businessmen and business-
women first, geeks and geekettes second.
Professional software testers very definitely
need to be geeks, but salaries are paid because
of the value that products deliver to customers.
Without real insight into the value proposi-
tion of the product, and the ways in which
the software is used, a test organization is
ultimately less effective.

21) In order to make intelligent release decisions,
test teams should be well informed about the

22)

23)

24)

25)

26)

real business climate. If developing an application

that will only be used once by an organization,
such as to comply with a new government regula-
tion, software that is “good enough” and “on time”
may be the perfect solution. By contrast, most

software is shipped with a higher proportion of

defects than is warranted. Without an understand-
ing of the business, it is virtually impossible for

test teams to articulate real risks.

“Testing constitutes as much as half of the
typical software development life cycle” and
that includes testing done by developers as
well as testers (Beizer 1995). If this observa-
tion, dated as it is, is even close to accurate,
this one thought will have a dramatic impact
on the investment decisions made in software
development organizations.

Some proportion of the dollars (perhaps 30
percent to as much as 50 percent) invested
in research in software engineering should
be expended on issues relating to test, since
this is the proportion of spending that mirrors
actual software development. Patents and papers
associated with innovations in testing should
therefore be common.

A similarly significant proportion of literature
about software engineering should be focused
on testing. If a significant proportion of the cost
of developing software is related to testing, this
only makes sense. But is this the case in the
local bookstore?

Mathematics are against us. The testing per-
mutation matrix includes:

e Differing supported platforms (for example,
operating systems)

¢ Release middleware (for example, databases)
¢ Earlier releases

* Integrated products combined together into
an overall solution

¢ New functionality
And so on.

Quality is a feature. Owing to the nature of
their role, marketing teams tend to push for new
features in products, often not realizing that
solid product quality is a key selling feature.

www.asq.org 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lessons from Experience: Managing Software Test Teams

27) “We will be known as the producer of the
highest-quality software in the industry.” This
is a notion worth seriously striving toward.
While this may not be the primary deciding
factor in sales, surely it helps to be a best of
breed product.

TEST INTERACTIONS
WITH OTHERS

Customers

The authors have separately written extensively about

engaging directly with customers in their test organiza-

tions. It is the most important (and, in practice, the most

rare) type of interaction a test team can undertake.
Some key opinions:

28) Customer residencies are essential (where
customers are on site and the customers and
test teams jointly perform testing activities).
These residencies should be planned and agreed
to far in advance, because direct feedback
from customers will likely require changes to
the product. Additionally, ignoring feedback
provided by on-site customers may damage the
relationship with the customer.

29) Emulating exact customer environments directly
should almost never be undertaken, and even
then, should only be committed to in the case

31)

32)

33)

34)

should guide the decision. Where possible, have
customers set such severities with the testers.
But remember to include larger considerations
as well—with unlimited resources or isolated
issues, customers will likely demand fixing all
known defects.

The cost of not working directly with customers
is significantly higher than the cost of working
with them.

It is sometimes right to be obstinate, as long as
customer impact can be assessed or estimated.
It is wrong to be obstinate on principle with
no reference to production impact.

Implant testing is a notion that warrants further
research and investigation. The authors have
written about implant testing elsewhere (Rivera,
Tate, and Will 2003); in short, it is the notion
whereby tools, techniques, and programs that are
useful for test teams are “implanted” in customer
shops, typically in their test environments. Similar
to development partnerships, test or quality
partnerships should be pursued with customers.

Transplant testing is a necessary activity. In
short, transplant testing is any of a wide range
of activities whereby one transplants customer
artifacts from customer environments and uses
them in his or her test beds.

of short-term, single-issue testing, For the long Devempment
term, only parts of customer environments Whenever the authors speak to large groups of testers,
should be approximated, and transplant-testing the easiest common ground to walk on is to refer to the
should be used as much as possible. Long-term development team as “the dark side.” There are great
emulation has not worked because it is: 1) too development teams and there are weak ones, but in
expensive, 2) continually changes, and 3) is practice, there is sadly too often contention between
useless to the customer without resources for testers and developers. Too often, developers are seen
reporting and analysis. to hold the intellectual ascendancy. Not surprisingly,
e If there is a need to directly emulate a cus- the authors have opinions on this as well:
tomer environment, a good estimate for the 35) If developers can help testers test, testers can
resources required is half the size of the help developers develop. Either testing is a
customer team responsible for managing the career, with truly specialized skills and areas of
environment. This is expensive, but the only expertise, or it is not. Consider some questions
way to do this effectively. that illustrate potential issues:

30) When uncertain of what severity to set on a
defect, the number and criticality of testing
scenarios, use cases, or user stories impacted

12 SQP VOL. 10, NO. 1/© 2007, ASQ

¢ How would short-term rotations that a
developer might take as a tester relate to
long-term insight?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lessons from Experience: Managing Software Test Teams

* Howdoesit help a developer to become an expert
at finding defects in his or her officemate’s code

(for example, via pair programming)?
¢ What s the long-term perspective when one is
thinking as a developer rather than a tester?

¢ Isitever areality in one’s organization for devel-
opers to be reluctant participants in testing, to
desire “finishing” more than “excellence”?

¢ Pair programming is not spoken of consistently
as pairing developers with testers, but it is an
approach that warrants consideration and
practice. Notably, many, if not most, of the
authors’ best testers are also able to program.

36) Since software architects generally come from
the ranks of developers, there should be an early
career incentive to focus on quality in the career
path of developers. Otherwise, it is difficult
to introduce this emphasis later. As an aside,
architects must keep their hands in the code,
lest they become “PowerPoint Architects.”

37) Development teams should write their own
automation and thereby contribute to the
overall automation effort. Some of the better
developers use this rule of thumb: Write three
lines of test automation code for every line of
product code.

38) In practice, test-driven development often
reduces required testing. Focusing on testing
before writing code helps ensure that code will
not only be testable, but thoroughly unit tested
(Beck 2003). Importantly, test-driven develop-
ment often helps ensure that only that which will
satisfy the client need is actually coded, reducing
the waste associated with the volume of function
that is shipped but rarely or never used.

Others

People are by nature reductionists. It is difficult for
people to hold complex problems in their minds; instead,
once they have analyzed a problem to their satisfaction,
they begin to think of it in more simple categories—they
reduce the complexity.

Testing, when considered in isolation, is a com-
paratively easy problem. The difficulty is that testing is
only a part of the larger fabric of software engineering.
Testing, when done properly, is a part of a community.

For example, a daily Scrum, as part of the agile Scrum

approach, should be cross functional.

The authors hold the following opinions about some
of these points of intersection with others:

39) Having people from support, education, market-
ing, development, and elsewhere help testis a
good thing—if done right.

40) All documentation must be tested.

41) All technical writers should use, and be able
to demo, the product they are writing about.

42) Test and education should be linked in at least
one of the following ways:

¢ Education should fund testing to validate steps.

o Education should participate in testing to
engage with the larger development effort and
to provide their unique insights.

METRICS AND TEST TEAMS

It is important to mention that the authors are advocates
of minimalist metrics for teams that employ a disciplined
agile approach to development. Working features of high
quality by iteration is the way we speak of the notion
of velocity. Another metric in agile environments the
authors consider key is the time between stable builds—
longer periods of instability could make it impossible
to complete a story in a day, for example. Happily, an
increasing proportion of the teams the authors work
with are employing disciplined agile approaches, but
this is by no means universally the case. As a result,
metrics abound around testing. The meaning behind
those metrics, however, is sometimes lacking. As a
result, the authors have formed various opinions about
test organizations and metrics:
43) Consistent metrics pertaining to the right
things matters. In addition, metrics definitely
affect behavior—so choose wisely!

44) The landscape of possible testing should be
understood. The question is not simply, “What
tests will we be doing?” but “What tests are
possible?” Test coverage should be clearly
identified and scoped for effort. This is the only
way to establish and communicate a baseline
for confidence and risk analysis.

45) Early trouble in test should indicate that overall
quality is at risk, Early warning signs—of which

www.asq.org 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lessons from Experience: Managing Software Test Teams

significant trouble in test is but one—must be
heeded. For example, if technical debt accrues
across several iterations, severe problems will
result in the end game.

46) A high defect refix rate is an indicator of one of
the following: poor coding standards, bad com-
munication, and/or inconsistent test practices.

47) Why, if it is urgent that test provide extensive
metrics, is it the case that other teams (for
example, marketing and development) rarely or
never provide their own set of metrics by which
their progress and effectiveness is communi-
cated? However, this is rarely the case. When a
marketing claim is made that “these features will
drive $20 million of revenue,” what accountability
is there in place for such assertions?

GUIDELINES FOR IMPROVING
TEST MANAGEMENT
PRACTICES

We hope readers have been challenged in some of their
thinking regarding software development, and especially
software testing. This last section is offered as a reminder
that anytime one decides to “cut against the grain,” it
can result in some pain. Following are some of the battle
scars the authors accumulated over the years. Their
experiences here can be leveraged by other teams to
improve their test management practices:

48) To be a good tester or test manager, one has to
be willing to say “No” when everyone else is
saying “Yes.” This means one has to be able
to clearly communicate the expected impact
in business terms for poor product quality. To
put an especially sharp edge on this item, the
authors tell test managers that they essentially
have to be unafraid of being fired for saying “No”
when everyone wants them to say “Yes.”

49) The true cost of rotating/sharing testers across
projects is often higher than dedicating them.
Switching costs are real. Part-time assignment
of testers will logically reduce product expertise,
reduce effectiveness, and lower morale.

50) Firstimpressions matter. Consider five primary
stages of failure or assessment: install, migration,
configuration, basic operation, and long-term
operation. When a client’s early experiences with

14 SQP VOL 10, NO. 1/© 2007, ASQ

51)

52)

53)

54)

55)

56)

installation or migration go well, their trust and
confidence in the company and in its product,
as well as their overall satisfaction, rises.

It is a mistake to get used to how the software
being tested works. Naive users of one’s software
will not appreciate it if one’s test teams become
accustomed to and complacent about the ugly
warts of another’s software.

Even with the best efforts, organizations will
still experience a serious defect that escapes
to the field. When this happens, there must be
skin in the game for teams outside of test—all
are responsible for high-quality software, and
all are accountable when issues arise.

Migration testing is rarely thorough enough (test-
ing the steps needed to move from one release toa
newer release). Consider focusing one’s transplant
test efforts particularly on this problem.

It is possible to test quality into the product.
This is by no means optimal, but it is possible.
Some might argue that one can’t build a fire by
burning toothpicks, but by getting enough of
them together, one certainly can. While this
is an expensive way to build a fire, the analogy
holds: You can test quality in, but it is wiser to
build an organizational culture where quality
is genuinely valued and a preeminent concern.
The authors believe that disciplined approaches
to agile help teams succeed more consistently,
owing to the relative ease with which shorter
iterations of stable function can be managed.

Issues relating to product shipment touch on
software engineering ethics and integrity. The
[EEE/ACM software engineering code of ethics
offers a compelling starting point (IEEE/ACM 1999).
“Business decisions” should be clearly identified, not
swept under the rug since they can compromise
the integrity of individuals involved.

There are such things as best practices, and they
should be constantly evaluated and new aspects
implemented in addition to the following:

* Red zone analysis (Rivera, Tate, and Will 2004a)
¢ Understanding “objective quality” and “subjec-
tive quality” (both are important). Objective

quality is that which can be measured (defect
severities over time, defect backlogs, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lessons from Experience: Managing Software Test Teams

50 on). Subjective quality deals more with
user-perceptions—things like product “fit and
finish,” ease of use, and intuitiveness. The
authors are advocates for outside-in develop-
ment as providing insight on subjective aspects
of quality (Kessler and Sweitzer 2007).

¢ Static code analysis

57) Fatigue—and errors in decision making—are
most common in the end game. Also, that
window presents the greatest temptation to
add new people, when it is hardest and most
expensive to train them. Deliberate effort must
be undertaken to ensure that, even when the
team is tired, the right decisions are made, rather
than the expedient ones.

A FEW THOUGHTS
FOR THE FUTURE

In the spirit of Vannevar Bush’s As We May Think (Bush
1945), the authors offer some thoughts that arise from
their experiences in managing software test efforts
that may be in the offing in the future. Agile software
development approaches have crossed the chasm and
are in many areas the norm. Consider some of the
implications that could arise if teams were to more
consistently adopt agile, even in the midst of large and
complex projects.

o Agile methods foster communication.
Partnerships could become the norm rather
than the contention that sometimes persists
between software engineering factions.

¢ With the advent of wide-scale adoption of
test-driven development and the continuing
advancement of development and test tooling,
methods and tools will continue to assist teams
delivery quality more routinely.

¢ It is a common notion in agile approaches that at
the end of each iteration, new function must be
demonstrated to real stakeholders. Exactly how this
is to be done is too rarely broached. The authors
believe outside-in development holds promise as a
means by which such interaction can become more
routine (Kessler and Sweitzer 2007).

¢ Concepts that have been identified in such works
as Implementing Lean Software Development,
while now largely a key point of discussion

in the agile community, will eventually rise
to prominence, as teams try to focus on the
overall software engineering approach from
requirements to customer value, rather than
their own individual domains (including test)
(see Poppendieck and Poppendieck 2007).

The authors’ suspicion is that it appears odd to read-
ers of an article on software test to find a conclusion
pointing toward the promise of agile methods. The job
of test teams is not simply finding defects, and this is
routinely forgotten. Stable code, validated by customers
on a regular basis, helps to produce products that delight
customers. Isn't this the point?

REFERENCES

Beck, Kent. 2003. Test driven development—By example. Boston:
Addison-Wesley.

Beizer, Boris. 1995. Black box testing: Techniques for functional testing
of software and systems. New York: John Wiley & Sons, Inc.

Bush, Vannevar. 1945, As we may think. The Atlantic Monthly. (July):
101-108.

Gabor, Andrea, 1990. The man who discovered quality: How W. Edwards
Deming brought the quality revolution to America. New York: Times Books.

JEEEJACM-CS Joint Task Force on Software Engineering Ethics and
Professional Practices. Software Engineering Code of Ethics and Professional
Practice. 1999. See URL: http://www.acm.org/serving/se/code.htm.

Kessler, Carl, and John Sweitzer. 2007. Outside-in development. Upper
Saddle River, NJ.: Addison-Wesley.

McConnell, Steve. 2004. Professional software development—Shorter
schedules, higher quality products, more successful projects, enhanced
careers. Boston: Addison-Wesley.

Poppendieck, Mary, and Tom Poppendieck. 2007. /mplementing lean
software development. Upper Saddle River, N.J.: Addison-Wesley.

Rivera, Ted, Adam Tate, and Scott Will. 2004a. Red zone analysis. In
Proceedings of the International Conference on Practical Software
Quality Techniques & International Conference on Practical Software
Testing Techniques Held in Washington, D.C., 22-26 March, Golden
Valley, MN: International Institute for Software Testing.

Rivera, Ted, Adam Tate, and Scott Will. 2004b. Implant and transplant
testing. In Proceedings of the International Conference on Practical
Softwore Quality Techniques & International Conference on Practical
Software Testing Techniques Held in Washington, D.C, 22-26 March,
Golden Vatley, MN: Internationa! Institute for Software Testing.

Sun Tzu. 1993. The ort of war. New York: Ballantine Books.

Will, Scott, Ted Rivera, and Adam Tate, 2003. Turn your customers into
interns. Quality Progress. (November): 31-37.

Yourdon, Edward. 1999. Death march: The complete software devel-
oper's guide to surviving "Mission Impossible” projects. Upper Saddle
River, N.J.: Prentice Hall PTR.

www.asq.org 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lessons from Experience: Managing Software Test Teams

BIOGRAPHIES

Ted Rivera is a software engineering thought leader with IBM's
software strategy organization within the software group. For
the last 24 years he has been a part of various teams in IBM that
deliver software in virtually every role a software team executes,

Scott Will is responsible for technical quality engineering for
IBM's software group. He has been a lead programmer (program-
ming in C, C++, and Java), a customer support team-lead, a test
manager, and now holds the position of quality architect and
consuitant within IBM. His main responsibilities include helping
teams improve product quality through the adoption of leading-

including development, test, information development, and sup-
port. Over the last several years, Rivera has been active in helping
IBM teams make the transition from traditional approaches to
development (such as the waterfall methodology) to more mod-
ern agile methods (such as XP, Scrum, RUP, and Lean). He holds
a number of patents and has published several dozen articles in
software journals and in conference proceedings on a wide range
of topics in the software engineering field. He can be reached by
e-mail at: trivera@us.ibm.com.

edge tools and development methodologies (such as data mining
tools, static code analysis tools, and helping teams move into the
agile arena). He holds a number of patents and has published
articles in software journals and in conference proceedings on a
wide range of topics in the software engineering field. He can be
reached by e-mail at: sawill@us.ibm.com.

Each One Reach One

The Each One Reach One (EORO) program encourages and assists ASQ members in recruiting new
members. It is a great way for you to build professional relationships of your own.

“For every part of ASQ,” said Michael Dreikorn, member since 1993, “it is important to find new and
emerging leaders.”

There are hundreds of members like Michael that make it their personal goal to recruit new ASQ members.
They are helping their colleagues receive information they need to advance and succeed in their own
careers and are building a network of professionals that share common interests and challenges.

How Does EORO Benefit Me?

For every Regular member that you recruit, you'll receive 5 ASQ Bucks (1 ASQ Buck = $1). Refer a company
that joins at the Sustaining member level, and you'll receive 120 ASQ Bucks.

Use ASQ Bucks toward:

¢ Membership renewal

e Quality Press purchases

¢ Conference of your choice

¢ Training or certification

For more information go to: http://www.asq.org/join/eoro/

To start recruiting you can download Member Referral cards and pass them along to prospective
members. These referral cards are designed to print as 2 x 3.5 cards. They match Avery standard 3612
business cards, and print 2 across, 4 down on 8 "2 x 11 paper. They are double-sided. Testing on a plain
sheet of paper before printing on card stock is recommended.

http://www.asqg.org/join/docs/eoro_buscardsheet2.pdf

16 SQP VOL 10, NO. 1/ 2007, ASQ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

