
0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E May/June 2009 I E E E S o f t w a r E 19

focus 1

Embedded software development has long been
reduced to a purely laborious task, necessary to
implement functionality such as control algorithms
with programming languages. With embedded soft-
ware’s increasing complexity and quality demands,
however, software engineering’s role is becoming
more important.

Software development is shifting from man-
ual programming to model-driven development
(MDD). Here, we identify specific characteristics
of embedded software, describe the paradigm of
model-driven software engineering, and describe
challenges and solutions to assure the quality of em-
bedded software.

Embedded Software
Developers of modern IT systems use standardized
platforms that provide the basic infrastructure for
service-oriented architectures, distributed systems,
error recovery, and reliability. Several abstraction
layers and common platforms support platform-
independent and distributed systems. Virtualiza-
tion techniques provide scalability through the dy-
namic scaling of (virtual) hardware platforms, and

live migration and hot-spare hardware increase IT
system reliability.

However, such an approach doesn’t fit the em-
bedded systems domain. Resource requirements
originating from cost, energy, size, or weight
constraints demand the efficient use of available
hardware resources. So, heavyweight abstrac-
tion layers, platforms, and virtualization tech-
niques that require many resources for mapping
high-level platforms to concrete hardware devices
aren’t feasible.

The diversity of embedded systems also pre-
vents the creation of a single specialized platform.
Embedded systems take such various forms as mo-
bile phones, train-control systems based on pro-
grammable logic controllers (PLCs), and glucose
meters. Obviously, no single embedded system
exists. Moreover, embedded software is rarely a
stand-alone product; rather, it’s a single element
in a product consisting of mechanics, electrics
and electronics, and software. Embedded system
development always focuses on the product, so it
must consider various constraints. For one, many
embedded systems are mass-produced products

O
ver the last 20 years, software’s impact on embedded system functionality,
as well as on the innovation and differentiation potential of new products,
has grown rapidly. This has led to an enormous increase in software com-
plexity, shorter innovation cycle times, and an ever-growing demand for ex-

trafunctional requirements—software safety, reliability, and timeliness, for example—
at affordable costs.

The increasing
complexity of
functional and
extrafunctional
requirements for
embedded systems
calls for new software
development
approaches.

Peter Liggesmeyer, University of Kaiserslautern

Mario Trapp, Fraunhofer Institute for Experimental Software Engineering

Trends in Embedded
Software Engineering

emb e dde d s o f t war e

20 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

with tight cost restrictions. Moreover, embedded
systems developers must consider resource limita-
tions and extreme environmental conditions such
as heat, humidity, or radiation.

To meet these requirements, developers of-
ten create a product-specific hardware platform.
Consequently, embedded software must be tai-
lored to heterogeneous hardware platforms and
operating systems to meet high-performance de-
mands despite limited resources (such as memory
or processing power). This yields tailored, spe-
cific software platforms that are either created
through the application and adaptation of plat-
form frameworks or developed specifically for
one embedded system. The need to create special-
ized hardware and software platforms is a key
difference between IT systems and embedded sys-
tems. For example, developers’ efforts in creating
the Automotive Open System Architecture (www.
autosar.org) development platform—a common
standardized platform for developing embedded
systems in automobiles—illustrate the difficulties
in establishing a common platform for even one
domain in embedded system development.

Extrafunctional requirements contribute to
these difficulties. Such requirements are far more
important in embedded systems than in IT sys-
tems. For example, IT system users are accustomed
to waiting for the system to react, but a car won’t
stop moving to wait for its control system to return
a calculation. Domain-specific, extrafunctional re-
quirements, such as software safety, reliability, and
timeliness, must be integrated into the develop-
ment process. Safety-critical systems, for example,
need certificated development processes and tool
chains according to standards such as Interna-
tional Electrotechnical Commission (IEC) 61508.1
Fulfilling rigorous extrafunctional properties is
therefore costly and time consuming. The regular
need to adapt hardware, platforms, and operating
systems also limits generic solutions’ applicability.
Moreover, resource, cost, and other limitations
often conflict with extrafunctional requirements
(such as real-time requirements).

In addition, embedded systems developers re-
quire extensive domain knowledge. For example,
developing a vehicle stability control system is
impossible if you don’t understand the physics of
vehicle dynamics. Consequently, embedded soft-
ware development has been restricted mainly to
control engineers and mechanical engineers, who
have the necessary domain expertise. With the
rapidly growing complexity of embedded software
systems, however, many companies have run into
software quality problems. Supporting seamless

cooperation between domain and software devel-
opment experts to combine their complementary
expertise remains a core challenge in embedded
software development.

From Programming
to Model-Driven Engineering
Managing the rapidly increasing complexity of em-
bedded software development is one of the most
important challenges for increasing product qual-
ity, reducing time to market, and reducing devel-
opment cost. MDD is one of the promising ap-
proaches that have emerged over the last decade.
Instead of directly coding software using pro-
gramming languages, developers model software
systems using intuitive, more expressive, graphi-
cal notations, which provide a higher level of ab-
straction than native programming languages. In
this approach, generators automatically create the
code implementing the system functionalities. To
manage embedded systems’ growing complex-
ity, modeling will likely replace manual coding for
application-level development—just as high-level
programming languages have almost completely
replaced assembly language.

Model-driven architecture (MDA; www.omg.
org/mda) is the primary driver for MDD of IT sys-
tems. Although MDA defines generic concepts of
models and model transformations, MDD of em-
bedded systems started much earlier, before UML
and MDA were standardized. Therefore, its main
drivers have been modeling tools implementing
vendor-specific languages (for example, Matlab/
Simulink and LabView). Using these tools, devel-
opers can completely specify embedded software
systems using high-level models. Researchers have
devised many approaches focusing on the specific
aspects of model-driven embedded systems devel-
opment.2 In addition to industry approaches are
those representing ongoing research—for exam-
ple, formal verification of hybrid systems,3 model-
ing of hybrid systems with UML,4 or modeling the
requirements of hybrid systems.5

MDD of embedded systems is, as with any other
development activity, controlled by a development
process. Figure 1 illustrates a possible iterative
MDD process for the embedded systems domain
that covers the complete software development life
cycle. The literature and development standards
have proposed similar variants. These variants in-
clude the life cycles defined in standards such as
the IEC 61508;1 the UML-based Ropes (Rapid
Object-Oriented Process for Embedded Systems),6
which is based on the spiral process model;7 and
different approaches based on a V-Model.8

With the rapidly
growing

complexity
of embedded

software
systems, many
companies have

run into software
quality problems.

 May/June 2009 I E E E S o f t w a r E 21

Requirements-engineering tools support re-
quirements specification, manage requirement
changes, and help track test case results and test
coverage. Depending on the modeling languages
used to describe requirements, developers can
also use graphical languages such as UML or the
Systems Modeling Language (SysML) to model
requirements—for example, using requirements
diagrams or use cases and scenarios. Develop-
ers can create a system’s functional design based
on the system requirements. Functional designs
cover an embedded system’s functionalities
without considering any technical implementa-
tion details. Instead, they consist of a compu-
tationally independent model—for example,
a mathematical model describing the created
software system’s core behavior. For example, a
functional design would specify an automotive
system’s closed-loop controllers from a control
engineer’s viewpoint, omitting implementation
details such as tasking or deployment. Not all
embedded software systems require a functional
design, so developers might skip this step.

Developers define the actual software ar-
chitecture on the basis of the requirements and
functional design. Because defining software
architecture is a creative process, transform-
ing a functional design to an architecture is a
mostly manual process. An architecture defini-
tion consists of various views covering the ar-
chitecture’s different aspects.9 Because UML
supports different diagrams and is easily ex-
tendable, developers often use it to specify ar-
chitectures, including those of embedded sys-
tems. Few data-flow-oriented modeling tools
provide all required language concepts and flex-
ibility, so they’re rarely applicable to architec-
tural modeling.

After defining the system architecture, de-
velopers refine the different components and
connections identified during the architecture
specification to obtain an executable, but still
platform-independent, system. To this end, they
identify further subcomponents and model the
basic components’ actual behavior. One solution
is to use UML to model the refined structure
and data-flow languages to model component
behavior—particularly if they need to model
continuous or hybrid behavior such as (closed-
loop) controllers or signal-processing compo-
nents. UML supports data-flow-oriented mod-
els to define the structure. Developers can use
additional diagrams—for example, sequence
diagrams—to specify the interaction between
components. Special deployment and tasking di-

agrams support the modeling of multit hreaded
and distributed applications.

In principle, these platform-independent mod-
els are sufficient for generating executable code.
Usually, however, developers must further refine
or extend platform-independent models in the
platform-specific design to support efficient code
generation for the target execution platform.

An iterative software development process
such as that in Figure 1 supports partial imple-
mentations, with the system’s most critical aspects
implemented first, as is often imperative in the
embedded systems domain. Early iterations and
integrations let developers react quickly to neces-
sary changes originating, for instance, from re-
source limitations. Today, a lack of tool support
and integration makes it impossible to seamlessly
cover the complete development life cycle using
model-driven-engineering paradigms. Particularly
for the design phase, however, automated trans-
formation from design models to code is already
possible. This allows rapid creation of executable
prototypes as well as early evaluation of confor-
mance to extrafunctional requirements, such as
resource use and timeliness.

Following the shift from assembly language to
high-level programming languages, and from pro-
gramming to model-based design, comes the shift
from MDD to domain-specific development10—a
shift already on the horizon. Some industry case

Requirements

Iterative prototypes

Functional
design

Functional
testing

Validation
testing

System
architecture

Software
architecture

Software
integration
and testing

System
integration
and testing

Software
design

Unit
testing

Implementation

Figure 1. An iterative model-driven development process for an
embedded system would encompass all phases of the development life
cycle. This process lets developers produce partial implementations
after each iteration, with the most critical aspects implemented first.

22 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

studies have already successfully applied domain-
specific development. MDD is based on general-
purpose languages and code generators for differ-
ent application domains. This claim for generality
contradicts the optimization of the language and
code generators to a given application context, and
to the hardware platform used. Domain-specific
modeling lets developers use domain-specific con-
cepts, so it provides even more-intuitive modeling
languages and integrates more software developer
know-how and application-specific optimizations
into the code generators.

Figure 2 shows a domain-specific language
for specifying condition-monitoring systems for
hydraulic systems. Although the example looks
like a domain expert’s Visio drawing, it’s actually
a formal model with a clear syntax and seman-
tics, enabling code generation based on this speci-
fication. Because the modeling elements have rich
semantics and the family of possible target plat-
forms is known, the resulting tailored code gen-
erators produce efficient code. All the software de-
velopment expertise necessary to create a system
from this specification is encapsulated in the code
generator, libraries, and (if required) the platform
software, which might include an operating sys-
tem or a microkernel. Here, software engineer-
ing experts are needed primarily to create the

domain-specific language and tool chain, which
domain experts can then use to build an embed-
ded software system.

Although domain-specific modeling simpli-
fies system specification, the modeling language
is limited to a specific class of problems. So, the
development of the domain-specific language and
generators requires an initial effort, which will
only pay off if the same development environment
is applicable to several projects. In certain appli-
cation domains, such as the condition-monitoring
system example, this is certainly the case. For
these domains, domain-specific development is
an efficient, promising approach. In general, how-
ever, domain-specific development won’t com-
pletely replace MDD; rather, hybrid solutions are
more likely.

For example, in UML, profiles let developers
tailor and extend the generic language to spe-
cific domains, thereby specializing the language
to the domain and enriching its semantics so that
it can be used more intuitively. Nonetheless, be-
cause UML is still at its base, the specialized lan-
guage can reuse existing (code generation) tool
chains. UML’s complete expressiveness is avail-
able if domain-specific extensions are insufficient.
Next-generation languages and tools will provide
extended extension and tailoring mechanisms, po-
tentially combining the advantages of MDD’s gen-
erality with those of specialized domain-specific
modeling languages.

Quality Assurance
of Safety-Related Systems
In addition to the constructive phases of embed-
ded systems development, ensuring the quality of
a system’s functional and extrafunctional prop-
erties is crucial in such development. This is par-
ticularly true for safety-related systems.

Before code generation, developers can apply
static and formal verification techniques to en-
sure software quality; after code generation, they
can use dynamic-testing approaches. Regard-
ing quality assurance, dynamic testing is still a
widespread approach for determining the correct
functioning of software and systems. However,
only formal verification techniques can achieve
complete correctness proofs. Still, every formal
technique has disadvantages. Applying formal
techniques to a complete, complex software sys-
tem isn’t possible. Moreover, formally proven
software might still be unsafe, and safe software
might not be completely correct. Correctness
clearly supports safety, but it doesn’t substitute
for safety analysis.

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

Figure 2. Example of a domain-specific language. In this view of the
model, developers simply define which sensors they use to monitor the
hydraulics system and connect them to the respective input ports of
the monitoring hardware. The complete code to configure the sensors
and to retrieve and to interpret the sensor readings is then generated
completely automatically.

 May/June 2009 I E E E S o f t w a r E 23

Safety analysis is therefore another central el-
ement in the development of safety-related sys-
tems, as well as for software. Model-based or
measurement-based approaches—each of which
has advantages and disadvantages—can address
safety and reliability issues. In practice, a combi-
nation of approaches is often necessary.

Model-based safety and reliability analysis
provides information at an early stage—that is,
before the system is implemented. It might identify
problems early and reduce rework costs. However,
developing the appropriate models requires addi-
tional effort and time, because safety models such
as fault trees11 are usually generated manually.

The measurement-based approach to safety
and reliability is only applicable after the system
has been fully specified or implemented. Because
measurements—such as failure data from system
testing—are never complete, producing depend-
able results requires statistical techniques.

Dynamic testing
Although formal verification techniques seem to
fit safety-critical software requirements, many de-
velopers use dynamic testing—that is, testing by
executing defined test cases. Particularly in the
MDD context, when using iterative development
processes, developers can apply tests based on the
design models in early design phases, enabling a
continuous quality-assurance process. Unlike for-
mal techniques, dynamic tests can be applied to
complex systems and are easier to realize. Basi-
cally, testing can start in the first iteration of the
development process, directly after code is gener-
ated from the software design. As Figure 1 shows,
you can apply dynamic testing in multiple phases:

Unit testing ■ tests specific units.
Software and system integration testing ■ tests
the integration of software units and of the
software system with its hardware.
Validation testing ■ ensures that all system re-
quirements have been fulfilled.
Optional ■ functional testing ensures confor-
mance to the functional design.

Although tests can’t prove software correctness,
systematic testing can achieve sufficient software
quality—even in safety-critical applications. Com-
bining statistic dynamic-testing procedures with
statistic analyses based on reliability growth models
allows quantification of residual risks.

Developers can implement testing in the actual
operating environment, which lets them detect cer-
tain problems, such as those usually not detected

through formal verification. These might include
interface problems but could also be the violation
of extrafunctional properties resulting in timing,
communication, or resource-consumption prob-
lems originating from the integration of software
and hardware.

Testing is definitely the simplest way to evaluate
system behavior, even after deployment, and with
respect to extrafunctional properties. In addition,
dynamic testing is scalable. A thorough, system-
atic selection of test cases ensures that they appro-
priately cover the desired functionality. Accepted
minimal criteria for testing embedded software are
the complete coverage of the specification with test
cases, branch coverage of the code, and reproduc-
ibility of the test (regression testing). Such criteria
are augmented with additional requirements in spe-
cial cases—for example, for safety-critical software
for commercial aircraft (RTCA DO-178B12).

Model-Based Safety and reliability analysis
Despite the importance of standard quality-
assurance techniques such as testing and formal
verification for embedded software development,
they can’t replace safety analysis techniques. So,
the demand is strong for techniques and mod-
els that help developers achieve and assess safety
and reliability. These techniques include reliability
block diagrams, fault tree analysis (FTA),11 and
Markov models.

FTA depicts causal chains leading to a failure
as a tree. The system failure to be examined is the
tree’s root; the basic failures—component failures,
for example—are its leaves. This tree structure in-
herently describes a hierarchical breakdown, but
with respect to the hierarchy of failure influences
rather than the system architecture. In FTA, mod-
ules are subtrees. This partitioning merely repre-
sents a property of the influence chains. The mod-
ules generally don’t correspond to the software
components identified during system development.
In a software model, the connections of compo-
nents usually define a graph structure that can’t be
mapped directly to fault trees. Consequently, divi-
sion of labor is hampered during fault tree design.
Moreover, tracing fault tree elements to the corre-
sponding software components is difficult. Reus-
ing software components makes it difficult to re-
use the corresponding fault tree elements, as well.

To overcome these drawbacks, component
fault trees13 extend conventional fault trees using
real components that are connected via ports (see
Figure 3 on the next page). The fault tree struc-
ture can therefore be similar to the software sys-
tem’s structure, simplifying the definition of the

Although tests
can’t prove
software

correctness,
systematic

testing
can achieve
sufficient
software
quality.

24 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

safety model and the traceability to the design
models. By providing a real-component concept,
component fault trees directly support the divi-
sion of labor and intensive component reuse.

Measurement-Based Safety
and reliability analysis
Safety engineers can use the modeling techniques
we’ve described in the early design phases to con-
structively guide the development process, and
thus prevent safety-critical design faults. However,
the result’s accuracy depends on the safety and
reliability models’ quality. Measurement-based
approaches don’t suffer from modeling faults. In
addition, the validity of measurements on a real
entity is unquestionable. However, like dynamic
testing, these approaches are applicable after code
generation at the earliest. Moreover, measure-
ments are never complete. Applying statistical
methods to obtain a statistically protected trust-
worthiness can somewhat compensate for this
disadvantage. Fault trees let you model reliability;
reliability growth models let you measure, evalu-
ate, and predict reliability. An overview of soft-

ware reliability modeling—a research discipline
since the early 1970s—is available elsewhere.14

Experience shows that the application of
theory is critical in software reliability analysis.
Reliability must be easy to measure and predict,
without the user having to completely under-
stand its theoretical background. Almost all the
theories can be encapsulated in a tool that evalu-
ates whether a certain reliability growth model
fits the observed failure data, determines model
parameters, and calculates reliability values (for
example, failure counts and rates).

U p to now, researchers have consid-
ered safety and reliability separately
from model-driven engineering. Even

emerging standards such as ISO/CD 26262 for
the automotive domain insufficiently address
model-driven engineering of embedded soft-
ware. A challenge is therefore to systematically
define how to ensure safety in the model-driven-
engineering context—and not only through ver-
ification and validation.

We must also clarify how different demands
will be applied to MDD approaches. MDD con-
cepts could be beneficial in safety engineering.
Particularly for engineering safety-critical sys-
tems, isolated concepts available in research
must evolve into standard approaches accepted
by certification bodies.

Different approaches for the development
and quality assurance of embedded software
systems have been successfully transferred to in-
dustry. However, techniques for systematically
developing embedded software can hardly keep
up with the ever-growing demand for new func-
tionalities and technologies. In the development
of safety-critical systems, new functionalities
are useless if you can’t ensure their quality and
safety. The rapid progress of systematic software
engineering technologies will therefore be a key
factor in the successful future development of
even more-complex embedded systems.

Acknowledgments
We thank Thomas Kuhn for his comments and con-
tribution to this article. We also thank the reviewers
and editors for their comments, which helped us im-
prove this article’s quality.

References
 1. IEC 61508, Functional Safety of Electrical/Electroni-

cal/Programmable Electronic Safety-Related Systems,
Int’l Electrotechnical Commission, 1998.

Self-steering:
Dangerous undefined
torque applied to motor
for more than 20 ms;

Locked
steering

Power steering failure logic

Steering torque
processor

Common-causes
hardware

Pulse width modulation
generation

DC link voltage
measurement

Shut-off execution

Steering functions

Common-causes
software

Figure 3. Component fault trees simplify fault tree analyses of complex
software systems (www.essarel.de). The fault tree describes two top
events of an active power steering system—namely, locked steering
and self-steering. The active power steering system is decomposed
to different components such as the power steering torque processor.
The component fault tree follows the structure of the system and thus
simplifies the mapping between functional model and safety model,
enables division of labor, and improves the reusability of fault tree
components.

 May/June 2009 I E E E S o f t w a r E 25

 2. H. Giese and S. Henkler, “A Survey of Approaches for
the Visual Model-Driven Development of Next Genera-
tion Software-Intensive Systems,” J. Visual Languages
and Computing, vol. 17, no. 6, 2006, pp. 528–550.

 3. R. Alur et al., “Hierarchical Hybrid Modeling of Em-
bedded Systems,” Proc. 1st Int’l Workshop Embedded
Software (EMSOFT 01), LNCS 2211, Springer, 2001,
pp. 14–31.

 4. K. Berkenkötter et al., “Executable HybridUML and Its
Application to Train Control Systems,” Integration of
Software Specification Techniques for Applications in
Eng., LNCS 3147, Springer, 2004, pp. 145–173.

 5. R. Grosu, I. Krüger, and T. Stauner, “Hybrid Sequence
Charts,” Proc. 3rd IEEE Int’l Symp. Object-Oriented
Real-Time Distributed Computing (ISORC 00), IEEE
Press, 2000, p. 104.

 6. B.P. Douglass, Real Time UML: Advances in the UML
for Real-Time Systems, Addison-Wesley, 2004.

 7. B.W. Boehm, “A Spiral Model of Software Development
and Enhancement,” Computer, vol. 21, no. 5, 1988, pp.
61–72.

 8. B.W. Boehm, “Guidelines for Verifying and Validat-
ing Software Requirements and Design Specification,”
Proc. European Conf. Applied Information Technology
(Euro IFIP), North-Holland, 1979.

 9. P. Kruchten, “The 4 + 1 View Model of Architecture,”
IEEE Software, vol. 12, no. 6, 1995, pp. 42–50.

 10. S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling:
Enabling Full Code Generation, Wiley-IEEE CS Press,
2008.

 11. IEC 61025, Fault Tree Analysis (FTA), Int’l Electro-
technical Commission, 1990.

 12. RTCA DO-178B, Software Considerations in Airborne
Systems and Equipment Certification, Radio Technical
Commission for Aeronautics, 1992.

 13. B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A New Com -
ponent Concept for Fault Trees,” Proc. 8th Austra lian
Workshop Safety Critical Systems and Software (SCS
03), Australian Computer Soc., 2003, pp. 37–46.

 14. M.R. Lyu, Handbook of Software Reliability Engineer-
ing, McGraw-Hill, 1995.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Peter Liggesmeyer is a full professor at the University of Kaiserslautern and the
director of the Fraunhofer Institute for Experimental Software Engineering . His research
interests include engineering of dependable systems, software quality assurance, and
software visualization. Liggesmeyer has a doctorate in electrical engineering from the Uni-
versity of Bochum. He’s a member of the IEEE and the German Chapter of the ACM. Contact
him at peter.liggesmeyer@iese.fraunhofer.de.

Mario Trapp is a division manager at the Fraunhofer Institute for Experimental
Software Engineering. His research interests include model-driven development of high-
integrity embedded systems and safety-engineering techniques. Trapp has a doctorate in
computer science from the University of Kaiserslautern. Contact him at mario.trapp@iese.
fraunhofer.de.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

