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focus 1

Embedded software development has long been 
reduced to a purely laborious task, necessary to 
implement functionality such as control algorithms 
with programming languages. With embedded soft-
ware’s increasing complexity and quality demands, 
however, software engineering’s role is becoming 
more important.

Software development is shifting from man-
ual programming to model-driven development 
(MDD). Here, we identify specific characteristics 
of embedded software, describe the paradigm of 
model-driven software engineering, and describe 
challenges and solutions to assure the quality of em-
bedded software.

Embedded Software
Developers of modern IT systems use standardized 
platforms that provide the basic infrastructure for 
service-oriented architectures, distributed systems, 
error recovery, and reliability. Several abstraction 
layers and common platforms support platform-
independent and distributed systems. Virtualiza-
tion techniques provide scalability through the dy-
namic scaling of (virtual) hardware platforms, and 

live migration and hot-spare hardware increase IT 
system reliability.

However, such an approach doesn’t fit the em-
bedded systems domain. Resource requirements 
originating from cost, energy, size, or weight 
constraints demand the efficient use of available 
hardware resources. So, heavyweight abstrac-
tion layers, platforms, and virtualization tech-
niques that require many resources for mapping 
high-level platforms to concrete hardware devices 
aren’t feasible.

The diversity of embedded systems also pre-
vents the creation of a single specialized platform. 
Embedded systems take such various forms as mo-
bile phones, train-control systems based on pro-
grammable logic controllers (PLCs), and glucose 
meters. Obviously, no single embedded system 
exists. Moreover, embedded software is rarely a 
stand-alone product; rather, it’s a single element 
in a product consisting of mechanics, electrics 
and electronics, and software. Embedded system 
development always focuses on the product, so it 
must consider various constraints. For one, many 
embedded systems are mass-produced products 
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with tight cost restrictions. Moreover, embedded 
systems developers must consider resource limita-
tions and extreme environmental conditions such 
as heat, humidity, or radiation.

To meet these requirements, developers of-
ten create a product-specific hardware platform. 
Consequently, embedded software must be tai-
lored to heterogeneous hardware platforms and 
operating systems to meet high-performance de-
mands despite limited resources (such as memory 
or processing power). This yields tailored, spe-
cific software platforms that are either created 
through the application and adaptation of plat-
form frameworks or developed specifically for 
one embedded system. The need to create special-
ized hardware and software platforms is a key 
difference between IT systems and embedded sys-
tems. For example, developers’ efforts in creating 
the Automotive Open System Architecture (www.
autosar.org) development platform—a common 
standardized platform for developing embedded 
systems in automobiles—illustrate the difficulties 
in establishing a common platform for even one 
domain in embedded system development.

Extrafunctional requirements contribute to 
these difficulties. Such requirements are far more 
important in embedded systems than in IT sys-
tems. For example, IT system users are accustomed 
to waiting for the system to react, but a car won’t 
stop moving to wait for its control system to return 
a calculation. Domain-specific, extrafunctional re-
quirements, such as software safety, reliability, and 
timeliness, must be integrated into the develop-
ment process. Safety-critical systems, for example, 
need certificated development processes and tool 
chains according to standards such as Interna-
tional Electrotechnical Commission (IEC) 61508.1 
Fulfilling rigorous extrafunctional properties is 
therefore costly and time consuming. The regular 
need to adapt hardware, platforms, and operating 
systems also limits generic solutions’ applicability. 
Moreover, resource, cost, and other limitations 
often conflict with extrafunctional requirements 
(such as real-time requirements).

In addition, embedded systems developers re-
quire extensive domain knowledge. For example, 
developing a vehicle stability control system is 
impossible if you don’t understand the physics of 
vehicle dynamics. Consequently, embedded soft-
ware development has been restricted mainly to 
control engineers and mechanical engineers, who 
have the necessary domain expertise. With the 
rapidly growing complexity of embedded software 
systems, however, many companies have run into 
software quality problems. Supporting seamless 

cooperation between domain and software devel-
opment experts to combine their complementary 
expertise remains a core challenge in embedded 
software development.

From Programming  
to Model-Driven Engineering
Managing the rapidly increasing complexity of em-
bedded software development is one of the most 
important challenges for increasing product qual-
ity, reducing time to market, and reducing devel-
opment cost. MDD is one of the promising ap-
proaches that have emerged over the last decade. 
Instead of directly coding software using pro-
gramming languages, developers model software 
systems using intuitive, more expressive, graphi-
cal notations, which provide a higher level of ab-
straction than native programming languages. In 
this approach, generators automatically create the 
code implementing the system functionalities. To 
manage embedded systems’ growing complex-
ity, modeling will likely replace manual coding for 
application-level development—just as high-level 
programming languages have almost completely 
replaced assembly language.

Model-driven architecture (MDA; www.omg.
org/mda) is the primary driver for MDD of IT sys-
tems. Although MDA defines generic concepts of 
models and model transformations, MDD of em-
bedded systems started much earlier, before UML 
and MDA were standardized. Therefore, its main 
drivers have been modeling tools implementing 
vendor-specific languages (for example, Matlab/
Simulink and LabView). Using these tools, devel-
opers can completely specify embedded software 
systems using high-level models. Researchers have 
devised many approaches focusing on the specific 
aspects of model-driven embedded systems devel-
opment.2 In addition to industry approaches are 
those representing ongoing research—for exam-
ple, formal verification of hybrid systems,3 model-
ing of hybrid systems with UML,4 or modeling the 
requirements of hybrid systems.5

MDD of embedded systems is, as with any other 
development activity, controlled by a development 
process. Figure 1 illustrates a possible iterative 
MDD process for the embedded systems domain 
that covers the complete software development life 
cycle. The literature and development standards 
have proposed similar variants. These variants in-
clude the life cycles defined in standards such as 
the IEC 61508;1 the UML-based Ropes (Rapid 
Object-Oriented Process for Embedded Systems),6 
which is based on the spiral process model;7 and 
different approaches based on a V-Model.8
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Requirements-engineering tools support re-
quirements specification, manage requirement 
changes, and help track test case results and test 
coverage. Depending on the modeling languages 
used to describe requirements, developers can 
also use graphical languages such as UML or the 
Systems Modeling Language (SysML) to model 
requirements—for example, using requirements 
diagrams or use cases and scenarios. Develop-
ers can create a system’s functional design based 
on the system requirements. Functional designs 
cover an embedded system’s functionalities 
without considering any technical implementa-
tion details. Instead, they consist of a compu-
tationally independent model—for example, 
a mathematical model describing the created 
software system’s core behavior. For example, a 
functional design would specify an automotive 
system’s closed-loop controllers from a control 
engineer’s viewpoint, omitting implementation 
details such as tasking or deployment. Not all 
embedded software systems require a functional 
design, so developers might skip this step.

Developers define the actual software ar-
chitecture on the basis of the requirements and 
functional design. Because defining software 
architecture is a creative process, transform-
ing a functional design to an architecture is a 
mostly manual process. An architecture defini-
tion consists of various views covering the ar-
chitecture’s different aspects.9 Because UML 
supports different diagrams and is easily ex-
tendable, developers often use it to specify ar-
chitectures, including those of embedded sys-
tems. Few data-flow-oriented modeling tools 
provide all required language concepts and flex-
ibility, so they’re rarely applicable to architec-
tural modeling.

After defining the system architecture, de-
velopers refine the different components and 
connections identified during the architecture 
specification to obtain an executable, but still 
platform-independent, system. To this end, they 
identify further subcomponents and model the 
basic components’ actual behavior. One solution 
is to use UML to model the refined structure 
and data-flow languages to model component 
behavior—particularly if they need to model 
continuous or hybrid behavior such as (closed-
loop) controllers or signal-processing compo-
nents. UML supports data-flow-oriented mod-
els to define the structure. Developers can use 
additional diagrams—for example, sequence 
diagrams—to specify the interaction between 
components. Special deployment and tasking di-

agrams support the modeling of multit hreaded 
and distributed applications. 

In principle, these platform-independent mod-
els are sufficient for generating executable code. 
Usually, however, developers must further refine 
or extend platform-independent models in the 
platform-specific design to support efficient code 
generation for the target execution platform.

An iterative software development process 
such as that in Figure 1 supports partial imple-
mentations, with the system’s most critical aspects 
implemented first, as is often imperative in the 
embedded systems domain. Early iterations and 
integrations let developers react quickly to neces-
sary changes originating, for instance, from re-
source limitations. Today, a lack of tool support 
and integration makes it impossible to seamlessly 
cover the complete development life cycle using 
model-driven-engineering paradigms. Particularly 
for the design phase, however, automated trans-
formation from design models to code is already 
possible. This allows rapid creation of executable 
prototypes as well as early evaluation of confor-
mance to extrafunctional requirements, such as 
resource use and timeliness.

Following the shift from assembly language to 
high-level programming languages, and from pro-
gramming to model-based design, comes the shift 
from MDD to domain-specific development10—a 
shift already on the horizon. Some industry case 
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Figure 1. An iterative model-driven development process for an 
embedded system would encompass all phases of the development life 
cycle. This process lets developers produce partial implementations 
after each iteration, with the most critical aspects implemented first.
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studies have already successfully applied domain-
specific development. MDD is based on general-
purpose languages and code generators for differ-
ent application domains. This claim for generality 
contradicts the optimization of the language and 
code generators to a given application context, and 
to the hardware platform used. Domain-specific 
modeling lets developers use domain-specific con-
cepts, so it provides even more-intuitive modeling 
languages and integrates more software developer 
know-how and application-specific optimizations 
into the code generators.

Figure 2 shows a domain-specific language 
for specifying condition-monitoring systems for 
hydraulic systems. Although the example looks 
like a domain expert’s Visio drawing, it’s actually 
a formal model with a clear syntax and seman-
tics, enabling code generation based on this speci-
fication. Because the modeling elements have rich 
semantics and the family of possible target plat-
forms is known, the resulting tailored code gen-
erators produce efficient code. All the software de-
velopment expertise necessary to create a system 
from this specification is encapsulated in the code 
generator, libraries, and (if required) the platform 
software, which might include an operating sys-
tem or a microkernel. Here, software engineer-
ing experts are needed primarily to create the 

domain-specific language and tool chain, which 
domain experts can then use to build an embed-
ded software system.

Although domain-specific modeling simpli-
fies system specification, the modeling language 
is limited to a specific class of problems. So, the 
development of the domain-specific language and 
generators requires an initial effort, which will 
only pay off if the same development environment 
is applicable to several projects. In certain appli-
cation domains, such as the condition-monitoring 
system example, this is certainly the case. For 
these domains, domain-specific development is 
an efficient, promising approach. In general, how-
ever, domain-specific development won’t com-
pletely replace MDD; rather, hybrid solutions are 
more likely.

For example, in UML, profiles let developers 
tailor and extend the generic language to spe-
cific domains, thereby specializing the language 
to the domain and enriching its semantics so that 
it can be used more intuitively. Nonetheless, be-
cause UML is still at its base, the specialized lan-
guage can reuse existing (code generation) tool 
chains. UML’s complete expressiveness is avail-
able if domain-specific extensions are insufficient. 
Next-generation languages and tools will provide 
extended extension and tailoring mechanisms, po-
tentially combining the advantages of MDD’s gen-
erality with those of specialized domain-specific 
modeling languages.

Quality Assurance  
of Safety-Related Systems
In addition to the constructive phases of embed-
ded systems development, ensuring the quality of 
a system’s functional and extrafunctional prop-
erties is crucial in such development. This is par-
ticularly true for safety-related systems.

Before code generation, developers can apply 
static and formal verification techniques to en-
sure software quality; after code generation, they 
can use dynamic-testing approaches. Regard-
ing quality assurance, dynamic testing is still a 
widespread approach for determining the correct 
functioning of software and systems. However, 
only formal verification techniques can achieve 
complete correctness proofs. Still, every formal 
technique has disadvantages. Applying formal 
techniques to a complete, complex software sys-
tem isn’t possible. Moreover, formally proven 
software might still be unsafe, and safe software 
might not be completely correct. Correctness 
clearly supports safety, but it doesn’t substitute 
for safety analysis.
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Figure 2. Example of a domain-specific language. In this view of the 
model, developers simply define which sensors they use to monitor the 
hydraulics system and connect them to the respective input ports of 
the monitoring hardware. The complete code to configure the sensors 
and to retrieve and to interpret the sensor readings is then generated 
completely automatically.
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Safety analysis is therefore another central el-
ement in the development of safety-related sys-
tems, as well as for software. Model-based or  
measurement-based approaches—each of which 
has advantages and disadvantages—can address 
safety and reliability issues. In practice, a combi-
nation of approaches is often necessary.

Model-based safety and reliability analysis 
provides information at an early stage—that is, 
before the system is implemented. It might identify 
problems early and reduce rework costs. However, 
developing the appropriate models requires addi-
tional effort and time, because safety models such 
as fault trees11 are usually generated manually.

The measurement-based approach to safety 
and reliability is only applicable after the system 
has been fully specified or implemented. Because 
measurements—such as failure data from system 
testing—are never complete, producing depend-
able results requires statistical techniques.

Dynamic testing
Although formal verification techniques seem to 
fit safety-critical software requirements, many de-
velopers use dynamic testing—that is, testing by 
executing defined test cases. Particularly in the 
MDD context, when using iterative development 
processes, developers can apply tests based on the 
design models in early design phases, enabling a 
continuous quality-assurance process. Unlike for-
mal techniques, dynamic tests can be applied to 
complex systems and are easier to realize. Basi-
cally, testing can start in the first iteration of the 
development process, directly after code is gener-
ated from the software design. As Figure 1 shows, 
you can apply dynamic testing in multiple phases:

Unit testing ■  tests specific units.
Software and system integration testing ■  tests 
the integration of software units and of the 
software system with its hardware.
Validation testing ■  ensures that all system re-
quirements have been fulfilled.
Optional  ■ functional testing ensures confor-
mance to the functional design.

Although tests can’t prove software correctness, 
systematic testing can achieve sufficient software 
quality—even in safety-critical applications. Com-
bining statistic dynamic-testing procedures with 
statistic analyses based on reliability growth models 
allows quantification of residual risks.

Developers can implement testing in the actual 
operating environment, which lets them detect cer-
tain problems, such as those usually not detected 

through formal verification. These might include 
interface problems but could also be the violation 
of extrafunctional properties resulting in timing, 
communication, or resource-consumption prob-
lems originating from the integration of software 
and hardware.

Testing is definitely the simplest way to evaluate 
system behavior, even after deployment, and with 
respect to extrafunctional properties. In addition, 
dynamic testing is scalable. A thorough, system-
atic selection of test cases ensures that they appro-
priately cover the desired functionality. Accepted 
minimal criteria for testing embedded software are 
the complete coverage of the specification with test 
cases, branch coverage of the code, and reproduc-
ibility of the test (regression testing). Such criteria 
are augmented with additional requirements in spe-
cial cases—for example, for safety-critical software 
for commercial aircraft (RTCA DO-178B12).

Model-Based Safety and reliability analysis
Despite the importance of standard quality- 
assurance techniques such as testing and formal 
verification for embedded software development, 
they can’t replace safety analysis techniques. So, 
the demand is strong for techniques and mod-
els that help developers achieve and assess safety 
and reliability. These techniques include reliability 
block diagrams, fault tree analysis (FTA),11 and 
Markov models.

FTA depicts causal chains leading to a failure 
as a tree. The system failure to be examined is the 
tree’s root; the basic failures—component failures, 
for example—are its leaves. This tree structure in-
herently describes a hierarchical breakdown, but 
with respect to the hierarchy of failure influences 
rather than the system architecture. In FTA, mod-
ules are subtrees. This partitioning merely repre-
sents a property of the influence chains. The mod-
ules generally don’t correspond to the software 
components identified during system development. 
In a software model, the connections of compo-
nents usually define a graph structure that can’t be 
mapped directly to fault trees. Consequently, divi-
sion of labor is hampered during fault tree design. 
Moreover, tracing fault tree elements to the corre-
sponding software components is difficult. Reus-
ing software components makes it difficult to re-
use the corresponding fault tree elements, as well.

To overcome these drawbacks, component 
fault trees13 extend conventional fault trees using 
real components that are connected via ports (see 
Figure 3 on the next page). The fault tree struc-
ture can therefore be similar to the software sys-
tem’s structure, simplifying the definition of the 
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safety model and the traceability to the design 
models. By providing a real-component concept, 
component fault trees directly support the divi-
sion of labor and intensive component reuse.

Measurement-Based Safety 
and reliability analysis
Safety engineers can use the modeling techniques 
we’ve described in the early design phases to con-
structively guide the development process, and 
thus prevent safety-critical design faults. However, 
the result’s accuracy depends on the safety and 
reliability models’ quality. Measurement-based 
approaches don’t suffer from modeling faults. In 
addition, the validity of measurements on a real 
entity is unquestionable. However, like dynamic 
testing, these approaches are applicable after code 
generation at the earliest. Moreover, measure-
ments are never complete. Applying statistical 
methods to obtain a statistically protected trust-
worthiness can somewhat compensate for this 
disadvantage. Fault trees let you model reliability; 
reliability growth models let you measure, evalu-
ate, and predict reliability. An overview of soft-

ware reliability modeling—a research discipline 
since the early 1970s—is available elsewhere.14

Experience shows that the application of 
theory is critical in software reliability analysis. 
Reliability must be easy to measure and predict, 
without the user having to completely under-
stand its theoretical background. Almost all the 
theories can be encapsulated in a tool that evalu-
ates whether a certain reliability growth model 
fits the observed failure data, determines model 
parameters, and calculates reliability values (for 
example, failure counts and rates).

U p to now, researchers have consid-
ered safety and reliability separately 
from model-driven engineering. Even 

emerging standards such as ISO/CD 26262 for 
the automotive domain insufficiently address 
model-driven engineering of embedded soft-
ware. A challenge is therefore to systematically 
define how to ensure safety in the model-driven- 
engineering context—and not only through ver-
ification and validation.

We must also clarify how different demands 
will be applied to MDD approaches. MDD con-
cepts could be beneficial in safety engineering. 
Particularly for engineering safety-critical sys-
tems, isolated concepts available in research 
must evolve into standard approaches accepted 
by certification bodies.

Different approaches for the development 
and quality assurance of embedded software 
systems have been successfully transferred to in-
dustry. However, techniques for systematically 
developing embedded software can hardly keep 
up with the ever-growing demand for new func-
tionalities and technologies. In the development 
of safety-critical systems, new functionalities 
are useless if you can’t ensure their quality and 
safety. The rapid progress of systematic software 
engineering technologies will therefore be a key 
factor in the successful future development of 
even more-complex embedded systems.
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